Metamath Proof Explorer


Theorem rmxyelqirrOLD

Description: Obsolete version of rmxyelqirr as of 23-Dec-2024. (Contributed by Stefan O'Rear, 21-Sep-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rmxyelqirrOLD A2NA+A21Na|c0da=c+A21d

Proof

Step Hyp Ref Expression
1 rmspecnonsq A2A21
2 1 adantr A2NA21
3 pell14qrval A21Pell14QRA21=a|c0da=c+A21dc2A21d2=1
4 2 3 syl A2NPell14QRA21=a|c0da=c+A21dc2A21d2=1
5 simpl a=c+A21dc2A21d2=1a=c+A21d
6 5 reximi da=c+A21dc2A21d2=1da=c+A21d
7 6 reximi c0da=c+A21dc2A21d2=1c0da=c+A21d
8 7 rgenw ac0da=c+A21dc2A21d2=1c0da=c+A21d
9 8 a1i A2Nac0da=c+A21dc2A21d2=1c0da=c+A21d
10 ss2rab a|c0da=c+A21dc2A21d2=1a|c0da=c+A21dac0da=c+A21dc2A21d2=1c0da=c+A21d
11 9 10 sylibr A2Na|c0da=c+A21dc2A21d2=1a|c0da=c+A21d
12 ssv V
13 rabss2 Va|c0da=c+A21daV|c0da=c+A21d
14 12 13 ax-mp a|c0da=c+A21daV|c0da=c+A21d
15 11 14 sstrdi A2Na|c0da=c+A21dc2A21d2=1aV|c0da=c+A21d
16 rabab aV|c0da=c+A21d=a|c0da=c+A21d
17 15 16 sseqtrdi A2Na|c0da=c+A21dc2A21d2=1a|c0da=c+A21d
18 4 17 eqsstrd A2NPell14QRA21a|c0da=c+A21d
19 simpr A2NN
20 rmspecfund A2PellFundA21=A+A21
21 20 adantr A2NPellFundA21=A+A21
22 21 eqcomd A2NA+A21=PellFundA21
23 22 oveq1d A2NA+A21N=PellFundA21N
24 oveq2 a=NPellFundA21a=PellFundA21N
25 24 rspceeqv NA+A21N=PellFundA21NaA+A21N=PellFundA21a
26 19 23 25 syl2anc A2NaA+A21N=PellFundA21a
27 pellfund14b A21A+A21NPell14QRA21aA+A21N=PellFundA21a
28 2 27 syl A2NA+A21NPell14QRA21aA+A21N=PellFundA21a
29 26 28 mpbird A2NA+A21NPell14QRA21
30 18 29 sseldd A2NA+A21Na|c0da=c+A21d