| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rmspecnonsq |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) ) | 
						
							| 3 |  | pell14qrval |  |-  ( ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) -> ( Pell14QR ` ( ( A ^ 2 ) - 1 ) ) = { a e. RR | E. c e. NN0 E. d e. ZZ ( a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) /\ ( ( c ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( d ^ 2 ) ) ) = 1 ) } ) | 
						
							| 4 | 2 3 | syl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( Pell14QR ` ( ( A ^ 2 ) - 1 ) ) = { a e. RR | E. c e. NN0 E. d e. ZZ ( a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) /\ ( ( c ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( d ^ 2 ) ) ) = 1 ) } ) | 
						
							| 5 |  | rabssab |  |-  { a e. RR | E. c e. NN0 E. d e. ZZ ( a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) /\ ( ( c ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( d ^ 2 ) ) ) = 1 ) } C_ { a | E. c e. NN0 E. d e. ZZ ( a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) /\ ( ( c ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( d ^ 2 ) ) ) = 1 ) } | 
						
							| 6 |  | simpl |  |-  ( ( a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) /\ ( ( c ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( d ^ 2 ) ) ) = 1 ) -> a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) ) | 
						
							| 7 | 6 | reximi |  |-  ( E. d e. ZZ ( a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) /\ ( ( c ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( d ^ 2 ) ) ) = 1 ) -> E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) ) | 
						
							| 8 | 7 | reximi |  |-  ( E. c e. NN0 E. d e. ZZ ( a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) /\ ( ( c ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( d ^ 2 ) ) ) = 1 ) -> E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) ) | 
						
							| 9 | 8 | ss2abi |  |-  { a | E. c e. NN0 E. d e. ZZ ( a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) /\ ( ( c ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( d ^ 2 ) ) ) = 1 ) } C_ { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } | 
						
							| 10 | 5 9 | sstri |  |-  { a e. RR | E. c e. NN0 E. d e. ZZ ( a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) /\ ( ( c ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( d ^ 2 ) ) ) = 1 ) } C_ { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } | 
						
							| 11 | 4 10 | eqsstrdi |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( Pell14QR ` ( ( A ^ 2 ) - 1 ) ) C_ { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } ) | 
						
							| 12 |  | simpr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> N e. ZZ ) | 
						
							| 13 |  | rmspecfund |  |-  ( A e. ( ZZ>= ` 2 ) -> ( PellFund ` ( ( A ^ 2 ) - 1 ) ) = ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( PellFund ` ( ( A ^ 2 ) - 1 ) ) = ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ) | 
						
							| 15 | 14 | eqcomd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) = ( PellFund ` ( ( A ^ 2 ) - 1 ) ) ) | 
						
							| 16 | 15 | oveq1d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) = ( ( PellFund ` ( ( A ^ 2 ) - 1 ) ) ^ N ) ) | 
						
							| 17 |  | oveq2 |  |-  ( a = N -> ( ( PellFund ` ( ( A ^ 2 ) - 1 ) ) ^ a ) = ( ( PellFund ` ( ( A ^ 2 ) - 1 ) ) ^ N ) ) | 
						
							| 18 | 17 | rspceeqv |  |-  ( ( N e. ZZ /\ ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) = ( ( PellFund ` ( ( A ^ 2 ) - 1 ) ) ^ N ) ) -> E. a e. ZZ ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) = ( ( PellFund ` ( ( A ^ 2 ) - 1 ) ) ^ a ) ) | 
						
							| 19 | 12 16 18 | syl2anc |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> E. a e. ZZ ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) = ( ( PellFund ` ( ( A ^ 2 ) - 1 ) ) ^ a ) ) | 
						
							| 20 |  | pellfund14b |  |-  ( ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) -> ( ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) e. ( Pell14QR ` ( ( A ^ 2 ) - 1 ) ) <-> E. a e. ZZ ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) = ( ( PellFund ` ( ( A ^ 2 ) - 1 ) ) ^ a ) ) ) | 
						
							| 21 | 2 20 | syl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) e. ( Pell14QR ` ( ( A ^ 2 ) - 1 ) ) <-> E. a e. ZZ ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) = ( ( PellFund ` ( ( A ^ 2 ) - 1 ) ) ^ a ) ) ) | 
						
							| 22 | 19 21 | mpbird |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) e. ( Pell14QR ` ( ( A ^ 2 ) - 1 ) ) ) | 
						
							| 23 | 11 22 | sseldd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) e. { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } ) |