| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pellfund14 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> E. x e. ZZ A = ( ( PellFund ` D ) ^ x ) ) | 
						
							| 2 |  | simpll |  |-  ( ( ( D e. ( NN \ []NN ) /\ x e. ZZ ) /\ A = ( ( PellFund ` D ) ^ x ) ) -> D e. ( NN \ []NN ) ) | 
						
							| 3 |  | pell1qrss14 |  |-  ( D e. ( NN \ []NN ) -> ( Pell1QR ` D ) C_ ( Pell14QR ` D ) ) | 
						
							| 4 |  | pellfundex |  |-  ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. ( Pell1QR ` D ) ) | 
						
							| 5 | 3 4 | sseldd |  |-  ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. ( Pell14QR ` D ) ) | 
						
							| 6 | 5 | ad2antrr |  |-  ( ( ( D e. ( NN \ []NN ) /\ x e. ZZ ) /\ A = ( ( PellFund ` D ) ^ x ) ) -> ( PellFund ` D ) e. ( Pell14QR ` D ) ) | 
						
							| 7 |  | simplr |  |-  ( ( ( D e. ( NN \ []NN ) /\ x e. ZZ ) /\ A = ( ( PellFund ` D ) ^ x ) ) -> x e. ZZ ) | 
						
							| 8 |  | pell14qrexpcl |  |-  ( ( D e. ( NN \ []NN ) /\ ( PellFund ` D ) e. ( Pell14QR ` D ) /\ x e. ZZ ) -> ( ( PellFund ` D ) ^ x ) e. ( Pell14QR ` D ) ) | 
						
							| 9 | 2 6 7 8 | syl3anc |  |-  ( ( ( D e. ( NN \ []NN ) /\ x e. ZZ ) /\ A = ( ( PellFund ` D ) ^ x ) ) -> ( ( PellFund ` D ) ^ x ) e. ( Pell14QR ` D ) ) | 
						
							| 10 |  | eleq1 |  |-  ( A = ( ( PellFund ` D ) ^ x ) -> ( A e. ( Pell14QR ` D ) <-> ( ( PellFund ` D ) ^ x ) e. ( Pell14QR ` D ) ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( D e. ( NN \ []NN ) /\ x e. ZZ ) /\ A = ( ( PellFund ` D ) ^ x ) ) -> ( A e. ( Pell14QR ` D ) <-> ( ( PellFund ` D ) ^ x ) e. ( Pell14QR ` D ) ) ) | 
						
							| 12 | 9 11 | mpbird |  |-  ( ( ( D e. ( NN \ []NN ) /\ x e. ZZ ) /\ A = ( ( PellFund ` D ) ^ x ) ) -> A e. ( Pell14QR ` D ) ) | 
						
							| 13 | 12 | r19.29an |  |-  ( ( D e. ( NN \ []NN ) /\ E. x e. ZZ A = ( ( PellFund ` D ) ^ x ) ) -> A e. ( Pell14QR ` D ) ) | 
						
							| 14 | 1 13 | impbida |  |-  ( D e. ( NN \ []NN ) -> ( A e. ( Pell14QR ` D ) <-> E. x e. ZZ A = ( ( PellFund ` D ) ^ x ) ) ) |