Description: The fundamental solution as an infimum is itself a solution, showing that the solution set is discrete.
Since the fundamental solution is an infimum, there must be an element ge to Fund and lt 2*Fund. If this element is equal to the fundamental solution we're done, otherwise use the infimum again to find another element which must be ge Fund and lt the first element; their ratio is a group element in (1,2), contradicting pell14qrgapw . (Contributed by Stefan O'Rear, 18-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pellfundex | |- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. ( Pell1QR ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re | |- 2 e. RR |
|
| 2 | pellfundre | |- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. RR ) |
|
| 3 | remulcl | |- ( ( 2 e. RR /\ ( PellFund ` D ) e. RR ) -> ( 2 x. ( PellFund ` D ) ) e. RR ) |
|
| 4 | 1 2 3 | sylancr | |- ( D e. ( NN \ []NN ) -> ( 2 x. ( PellFund ` D ) ) e. RR ) |
| 5 | 0red | |- ( D e. ( NN \ []NN ) -> 0 e. RR ) |
|
| 6 | 1red | |- ( D e. ( NN \ []NN ) -> 1 e. RR ) |
|
| 7 | 0lt1 | |- 0 < 1 |
|
| 8 | 7 | a1i | |- ( D e. ( NN \ []NN ) -> 0 < 1 ) |
| 9 | pellfundgt1 | |- ( D e. ( NN \ []NN ) -> 1 < ( PellFund ` D ) ) |
|
| 10 | 5 6 2 8 9 | lttrd | |- ( D e. ( NN \ []NN ) -> 0 < ( PellFund ` D ) ) |
| 11 | 2 10 | elrpd | |- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. RR+ ) |
| 12 | 2 11 | ltaddrpd | |- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) < ( ( PellFund ` D ) + ( PellFund ` D ) ) ) |
| 13 | 2 | recnd | |- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. CC ) |
| 14 | 13 | 2timesd | |- ( D e. ( NN \ []NN ) -> ( 2 x. ( PellFund ` D ) ) = ( ( PellFund ` D ) + ( PellFund ` D ) ) ) |
| 15 | 12 14 | breqtrrd | |- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) < ( 2 x. ( PellFund ` D ) ) ) |
| 16 | pellfundglb | |- ( ( D e. ( NN \ []NN ) /\ ( 2 x. ( PellFund ` D ) ) e. RR /\ ( PellFund ` D ) < ( 2 x. ( PellFund ` D ) ) ) -> E. a e. ( Pell1QR ` D ) ( ( PellFund ` D ) <_ a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) |
|
| 17 | 4 15 16 | mpd3an23 | |- ( D e. ( NN \ []NN ) -> E. a e. ( Pell1QR ` D ) ( ( PellFund ` D ) <_ a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) |
| 18 | 2 | adantr | |- ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) -> ( PellFund ` D ) e. RR ) |
| 19 | pell1qrss14 | |- ( D e. ( NN \ []NN ) -> ( Pell1QR ` D ) C_ ( Pell14QR ` D ) ) |
|
| 20 | 19 | sselda | |- ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) -> a e. ( Pell14QR ` D ) ) |
| 21 | pell14qrre | |- ( ( D e. ( NN \ []NN ) /\ a e. ( Pell14QR ` D ) ) -> a e. RR ) |
|
| 22 | 20 21 | syldan | |- ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) -> a e. RR ) |
| 23 | 18 22 | leloed | |- ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) -> ( ( PellFund ` D ) <_ a <-> ( ( PellFund ` D ) < a \/ ( PellFund ` D ) = a ) ) ) |
| 24 | simp-4l | |- ( ( ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) /\ b e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) <_ b /\ b < a ) ) -> D e. ( NN \ []NN ) ) |
|
| 25 | simp-4r | |- ( ( ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) /\ b e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) <_ b /\ b < a ) ) -> a e. ( Pell1QR ` D ) ) |
|
| 26 | simplr | |- ( ( ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) /\ b e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) <_ b /\ b < a ) ) -> b e. ( Pell1QR ` D ) ) |
|
| 27 | simprr | |- ( ( ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) /\ b e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) <_ b /\ b < a ) ) -> b < a ) |
|
| 28 | 22 | ad3antrrr | |- ( ( ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) /\ b e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) <_ b /\ b < a ) ) -> a e. RR ) |
| 29 | 4 | ad4antr | |- ( ( ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) /\ b e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) <_ b /\ b < a ) ) -> ( 2 x. ( PellFund ` D ) ) e. RR ) |
| 30 | 19 | ad4antr | |- ( ( ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) /\ b e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) <_ b /\ b < a ) ) -> ( Pell1QR ` D ) C_ ( Pell14QR ` D ) ) |
| 31 | 30 26 | sseldd | |- ( ( ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) /\ b e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) <_ b /\ b < a ) ) -> b e. ( Pell14QR ` D ) ) |
| 32 | pell14qrre | |- ( ( D e. ( NN \ []NN ) /\ b e. ( Pell14QR ` D ) ) -> b e. RR ) |
|
| 33 | 24 31 32 | syl2anc | |- ( ( ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) /\ b e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) <_ b /\ b < a ) ) -> b e. RR ) |
| 34 | remulcl | |- ( ( 2 e. RR /\ b e. RR ) -> ( 2 x. b ) e. RR ) |
|
| 35 | 1 33 34 | sylancr | |- ( ( ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) /\ b e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) <_ b /\ b < a ) ) -> ( 2 x. b ) e. RR ) |
| 36 | simprr | |- ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) -> a < ( 2 x. ( PellFund ` D ) ) ) |
|
| 37 | 36 | ad2antrr | |- ( ( ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) /\ b e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) <_ b /\ b < a ) ) -> a < ( 2 x. ( PellFund ` D ) ) ) |
| 38 | simprl | |- ( ( ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) /\ b e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) <_ b /\ b < a ) ) -> ( PellFund ` D ) <_ b ) |
|
| 39 | 2 | ad4antr | |- ( ( ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) /\ b e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) <_ b /\ b < a ) ) -> ( PellFund ` D ) e. RR ) |
| 40 | 1 | a1i | |- ( ( ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) /\ b e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) <_ b /\ b < a ) ) -> 2 e. RR ) |
| 41 | 2pos | |- 0 < 2 |
|
| 42 | 41 | a1i | |- ( ( ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) /\ b e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) <_ b /\ b < a ) ) -> 0 < 2 ) |
| 43 | lemul2 | |- ( ( ( PellFund ` D ) e. RR /\ b e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( PellFund ` D ) <_ b <-> ( 2 x. ( PellFund ` D ) ) <_ ( 2 x. b ) ) ) |
|
| 44 | 39 33 40 42 43 | syl112anc | |- ( ( ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) /\ b e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) <_ b /\ b < a ) ) -> ( ( PellFund ` D ) <_ b <-> ( 2 x. ( PellFund ` D ) ) <_ ( 2 x. b ) ) ) |
| 45 | 38 44 | mpbid | |- ( ( ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) /\ b e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) <_ b /\ b < a ) ) -> ( 2 x. ( PellFund ` D ) ) <_ ( 2 x. b ) ) |
| 46 | 28 29 35 37 45 | ltletrd | |- ( ( ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) /\ b e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) <_ b /\ b < a ) ) -> a < ( 2 x. b ) ) |
| 47 | simp1 | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> D e. ( NN \ []NN ) ) |
|
| 48 | 19 | 3ad2ant1 | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> ( Pell1QR ` D ) C_ ( Pell14QR ` D ) ) |
| 49 | simp2l | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> a e. ( Pell1QR ` D ) ) |
|
| 50 | 48 49 | sseldd | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> a e. ( Pell14QR ` D ) ) |
| 51 | simp2r | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> b e. ( Pell1QR ` D ) ) |
|
| 52 | 48 51 | sseldd | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> b e. ( Pell14QR ` D ) ) |
| 53 | pell14qrdivcl | |- ( ( D e. ( NN \ []NN ) /\ a e. ( Pell14QR ` D ) /\ b e. ( Pell14QR ` D ) ) -> ( a / b ) e. ( Pell14QR ` D ) ) |
|
| 54 | 47 50 52 53 | syl3anc | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> ( a / b ) e. ( Pell14QR ` D ) ) |
| 55 | 47 52 32 | syl2anc | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> b e. RR ) |
| 56 | 55 | recnd | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> b e. CC ) |
| 57 | 56 | mullidd | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> ( 1 x. b ) = b ) |
| 58 | simp3l | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> b < a ) |
|
| 59 | 57 58 | eqbrtrd | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> ( 1 x. b ) < a ) |
| 60 | 1red | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> 1 e. RR ) |
|
| 61 | 47 50 21 | syl2anc | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> a e. RR ) |
| 62 | pell14qrgt0 | |- ( ( D e. ( NN \ []NN ) /\ b e. ( Pell14QR ` D ) ) -> 0 < b ) |
|
| 63 | 47 52 62 | syl2anc | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> 0 < b ) |
| 64 | ltmuldiv | |- ( ( 1 e. RR /\ a e. RR /\ ( b e. RR /\ 0 < b ) ) -> ( ( 1 x. b ) < a <-> 1 < ( a / b ) ) ) |
|
| 65 | 60 61 55 63 64 | syl112anc | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> ( ( 1 x. b ) < a <-> 1 < ( a / b ) ) ) |
| 66 | 59 65 | mpbid | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> 1 < ( a / b ) ) |
| 67 | simp3r | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> a < ( 2 x. b ) ) |
|
| 68 | 1 | a1i | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> 2 e. RR ) |
| 69 | ltdivmul2 | |- ( ( a e. RR /\ 2 e. RR /\ ( b e. RR /\ 0 < b ) ) -> ( ( a / b ) < 2 <-> a < ( 2 x. b ) ) ) |
|
| 70 | 61 68 55 63 69 | syl112anc | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> ( ( a / b ) < 2 <-> a < ( 2 x. b ) ) ) |
| 71 | 67 70 | mpbird | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> ( a / b ) < 2 ) |
| 72 | simprr | |- ( ( ( D e. ( NN \ []NN ) /\ ( a / b ) e. ( Pell14QR ` D ) ) /\ ( 1 < ( a / b ) /\ ( a / b ) < 2 ) ) -> ( a / b ) < 2 ) |
|
| 73 | simpll | |- ( ( ( D e. ( NN \ []NN ) /\ ( a / b ) e. ( Pell14QR ` D ) ) /\ ( 1 < ( a / b ) /\ ( a / b ) < 2 ) ) -> D e. ( NN \ []NN ) ) |
|
| 74 | simplr | |- ( ( ( D e. ( NN \ []NN ) /\ ( a / b ) e. ( Pell14QR ` D ) ) /\ ( 1 < ( a / b ) /\ ( a / b ) < 2 ) ) -> ( a / b ) e. ( Pell14QR ` D ) ) |
|
| 75 | simprl | |- ( ( ( D e. ( NN \ []NN ) /\ ( a / b ) e. ( Pell14QR ` D ) ) /\ ( 1 < ( a / b ) /\ ( a / b ) < 2 ) ) -> 1 < ( a / b ) ) |
|
| 76 | pell14qrgapw | |- ( ( D e. ( NN \ []NN ) /\ ( a / b ) e. ( Pell14QR ` D ) /\ 1 < ( a / b ) ) -> 2 < ( a / b ) ) |
|
| 77 | 73 74 75 76 | syl3anc | |- ( ( ( D e. ( NN \ []NN ) /\ ( a / b ) e. ( Pell14QR ` D ) ) /\ ( 1 < ( a / b ) /\ ( a / b ) < 2 ) ) -> 2 < ( a / b ) ) |
| 78 | pell14qrre | |- ( ( D e. ( NN \ []NN ) /\ ( a / b ) e. ( Pell14QR ` D ) ) -> ( a / b ) e. RR ) |
|
| 79 | 78 | adantr | |- ( ( ( D e. ( NN \ []NN ) /\ ( a / b ) e. ( Pell14QR ` D ) ) /\ ( 1 < ( a / b ) /\ ( a / b ) < 2 ) ) -> ( a / b ) e. RR ) |
| 80 | ltnsym | |- ( ( 2 e. RR /\ ( a / b ) e. RR ) -> ( 2 < ( a / b ) -> -. ( a / b ) < 2 ) ) |
|
| 81 | 1 79 80 | sylancr | |- ( ( ( D e. ( NN \ []NN ) /\ ( a / b ) e. ( Pell14QR ` D ) ) /\ ( 1 < ( a / b ) /\ ( a / b ) < 2 ) ) -> ( 2 < ( a / b ) -> -. ( a / b ) < 2 ) ) |
| 82 | 77 81 | mpd | |- ( ( ( D e. ( NN \ []NN ) /\ ( a / b ) e. ( Pell14QR ` D ) ) /\ ( 1 < ( a / b ) /\ ( a / b ) < 2 ) ) -> -. ( a / b ) < 2 ) |
| 83 | 72 82 | pm2.21dd | |- ( ( ( D e. ( NN \ []NN ) /\ ( a / b ) e. ( Pell14QR ` D ) ) /\ ( 1 < ( a / b ) /\ ( a / b ) < 2 ) ) -> ( PellFund ` D ) e. ( Pell1QR ` D ) ) |
| 84 | 47 54 66 71 83 | syl22anc | |- ( ( D e. ( NN \ []NN ) /\ ( a e. ( Pell1QR ` D ) /\ b e. ( Pell1QR ` D ) ) /\ ( b < a /\ a < ( 2 x. b ) ) ) -> ( PellFund ` D ) e. ( Pell1QR ` D ) ) |
| 85 | 24 25 26 27 46 84 | syl122anc | |- ( ( ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) /\ b e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) <_ b /\ b < a ) ) -> ( PellFund ` D ) e. ( Pell1QR ` D ) ) |
| 86 | simpll | |- ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) -> D e. ( NN \ []NN ) ) |
|
| 87 | 22 | adantr | |- ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) -> a e. RR ) |
| 88 | simprl | |- ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) -> ( PellFund ` D ) < a ) |
|
| 89 | pellfundglb | |- ( ( D e. ( NN \ []NN ) /\ a e. RR /\ ( PellFund ` D ) < a ) -> E. b e. ( Pell1QR ` D ) ( ( PellFund ` D ) <_ b /\ b < a ) ) |
|
| 90 | 86 87 88 89 | syl3anc | |- ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) -> E. b e. ( Pell1QR ` D ) ( ( PellFund ` D ) <_ b /\ b < a ) ) |
| 91 | 85 90 | r19.29a | |- ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( ( PellFund ` D ) < a /\ a < ( 2 x. ( PellFund ` D ) ) ) ) -> ( PellFund ` D ) e. ( Pell1QR ` D ) ) |
| 92 | 91 | exp32 | |- ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) -> ( ( PellFund ` D ) < a -> ( a < ( 2 x. ( PellFund ` D ) ) -> ( PellFund ` D ) e. ( Pell1QR ` D ) ) ) ) |
| 93 | simp2 | |- ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( PellFund ` D ) = a /\ a < ( 2 x. ( PellFund ` D ) ) ) -> ( PellFund ` D ) = a ) |
|
| 94 | simp1r | |- ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( PellFund ` D ) = a /\ a < ( 2 x. ( PellFund ` D ) ) ) -> a e. ( Pell1QR ` D ) ) |
|
| 95 | 93 94 | eqeltrd | |- ( ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) /\ ( PellFund ` D ) = a /\ a < ( 2 x. ( PellFund ` D ) ) ) -> ( PellFund ` D ) e. ( Pell1QR ` D ) ) |
| 96 | 95 | 3exp | |- ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) -> ( ( PellFund ` D ) = a -> ( a < ( 2 x. ( PellFund ` D ) ) -> ( PellFund ` D ) e. ( Pell1QR ` D ) ) ) ) |
| 97 | 92 96 | jaod | |- ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) -> ( ( ( PellFund ` D ) < a \/ ( PellFund ` D ) = a ) -> ( a < ( 2 x. ( PellFund ` D ) ) -> ( PellFund ` D ) e. ( Pell1QR ` D ) ) ) ) |
| 98 | 23 97 | sylbid | |- ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) -> ( ( PellFund ` D ) <_ a -> ( a < ( 2 x. ( PellFund ` D ) ) -> ( PellFund ` D ) e. ( Pell1QR ` D ) ) ) ) |
| 99 | 98 | impd | |- ( ( D e. ( NN \ []NN ) /\ a e. ( Pell1QR ` D ) ) -> ( ( ( PellFund ` D ) <_ a /\ a < ( 2 x. ( PellFund ` D ) ) ) -> ( PellFund ` D ) e. ( Pell1QR ` D ) ) ) |
| 100 | 99 | rexlimdva | |- ( D e. ( NN \ []NN ) -> ( E. a e. ( Pell1QR ` D ) ( ( PellFund ` D ) <_ a /\ a < ( 2 x. ( PellFund ` D ) ) ) -> ( PellFund ` D ) e. ( Pell1QR ` D ) ) ) |
| 101 | 17 100 | mpd | |- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. ( Pell1QR ` D ) ) |