| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1red |  |-  ( D e. ( NN \ []NN ) -> 1 e. RR ) | 
						
							| 2 |  | eldifi |  |-  ( D e. ( NN \ []NN ) -> D e. NN ) | 
						
							| 3 | 2 | peano2nnd |  |-  ( D e. ( NN \ []NN ) -> ( D + 1 ) e. NN ) | 
						
							| 4 | 3 | nnrpd |  |-  ( D e. ( NN \ []NN ) -> ( D + 1 ) e. RR+ ) | 
						
							| 5 | 4 | rpsqrtcld |  |-  ( D e. ( NN \ []NN ) -> ( sqrt ` ( D + 1 ) ) e. RR+ ) | 
						
							| 6 | 5 | rpred |  |-  ( D e. ( NN \ []NN ) -> ( sqrt ` ( D + 1 ) ) e. RR ) | 
						
							| 7 | 2 | nnrpd |  |-  ( D e. ( NN \ []NN ) -> D e. RR+ ) | 
						
							| 8 | 7 | rpsqrtcld |  |-  ( D e. ( NN \ []NN ) -> ( sqrt ` D ) e. RR+ ) | 
						
							| 9 | 8 | rpred |  |-  ( D e. ( NN \ []NN ) -> ( sqrt ` D ) e. RR ) | 
						
							| 10 | 6 9 | readdcld |  |-  ( D e. ( NN \ []NN ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) e. RR ) | 
						
							| 11 |  | pellfundre |  |-  ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. RR ) | 
						
							| 12 |  | sqrt1 |  |-  ( sqrt ` 1 ) = 1 | 
						
							| 13 | 12 1 | eqeltrid |  |-  ( D e. ( NN \ []NN ) -> ( sqrt ` 1 ) e. RR ) | 
						
							| 14 | 13 13 | readdcld |  |-  ( D e. ( NN \ []NN ) -> ( ( sqrt ` 1 ) + ( sqrt ` 1 ) ) e. RR ) | 
						
							| 15 |  | 1lt2 |  |-  1 < 2 | 
						
							| 16 | 12 12 | oveq12i |  |-  ( ( sqrt ` 1 ) + ( sqrt ` 1 ) ) = ( 1 + 1 ) | 
						
							| 17 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 18 | 16 17 | eqtri |  |-  ( ( sqrt ` 1 ) + ( sqrt ` 1 ) ) = 2 | 
						
							| 19 | 15 18 | breqtrri |  |-  1 < ( ( sqrt ` 1 ) + ( sqrt ` 1 ) ) | 
						
							| 20 | 19 | a1i |  |-  ( D e. ( NN \ []NN ) -> 1 < ( ( sqrt ` 1 ) + ( sqrt ` 1 ) ) ) | 
						
							| 21 | 3 | nnge1d |  |-  ( D e. ( NN \ []NN ) -> 1 <_ ( D + 1 ) ) | 
						
							| 22 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 23 | 22 | a1i |  |-  ( D e. ( NN \ []NN ) -> 0 <_ 1 ) | 
						
							| 24 | 2 | nnred |  |-  ( D e. ( NN \ []NN ) -> D e. RR ) | 
						
							| 25 |  | peano2re |  |-  ( D e. RR -> ( D + 1 ) e. RR ) | 
						
							| 26 | 24 25 | syl |  |-  ( D e. ( NN \ []NN ) -> ( D + 1 ) e. RR ) | 
						
							| 27 | 3 | nnnn0d |  |-  ( D e. ( NN \ []NN ) -> ( D + 1 ) e. NN0 ) | 
						
							| 28 | 27 | nn0ge0d |  |-  ( D e. ( NN \ []NN ) -> 0 <_ ( D + 1 ) ) | 
						
							| 29 | 1 23 26 28 | sqrtled |  |-  ( D e. ( NN \ []NN ) -> ( 1 <_ ( D + 1 ) <-> ( sqrt ` 1 ) <_ ( sqrt ` ( D + 1 ) ) ) ) | 
						
							| 30 | 21 29 | mpbid |  |-  ( D e. ( NN \ []NN ) -> ( sqrt ` 1 ) <_ ( sqrt ` ( D + 1 ) ) ) | 
						
							| 31 | 2 | nnge1d |  |-  ( D e. ( NN \ []NN ) -> 1 <_ D ) | 
						
							| 32 | 2 | nnnn0d |  |-  ( D e. ( NN \ []NN ) -> D e. NN0 ) | 
						
							| 33 | 32 | nn0ge0d |  |-  ( D e. ( NN \ []NN ) -> 0 <_ D ) | 
						
							| 34 | 1 23 24 33 | sqrtled |  |-  ( D e. ( NN \ []NN ) -> ( 1 <_ D <-> ( sqrt ` 1 ) <_ ( sqrt ` D ) ) ) | 
						
							| 35 | 31 34 | mpbid |  |-  ( D e. ( NN \ []NN ) -> ( sqrt ` 1 ) <_ ( sqrt ` D ) ) | 
						
							| 36 | 13 13 6 9 30 35 | le2addd |  |-  ( D e. ( NN \ []NN ) -> ( ( sqrt ` 1 ) + ( sqrt ` 1 ) ) <_ ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) ) | 
						
							| 37 | 1 14 10 20 36 | ltletrd |  |-  ( D e. ( NN \ []NN ) -> 1 < ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) ) | 
						
							| 38 |  | pellfundge |  |-  ( D e. ( NN \ []NN ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ ( PellFund ` D ) ) | 
						
							| 39 | 1 10 11 37 38 | ltletrd |  |-  ( D e. ( NN \ []NN ) -> 1 < ( PellFund ` D ) ) |