| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pellfundval |  |-  ( D e. ( NN \ []NN ) -> ( PellFund ` D ) = inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) ) | 
						
							| 2 |  | ssrab2 |  |-  { a e. ( Pell14QR ` D ) | 1 < a } C_ ( Pell14QR ` D ) | 
						
							| 3 |  | pell14qrre |  |-  ( ( D e. ( NN \ []NN ) /\ a e. ( Pell14QR ` D ) ) -> a e. RR ) | 
						
							| 4 | 3 | ex |  |-  ( D e. ( NN \ []NN ) -> ( a e. ( Pell14QR ` D ) -> a e. RR ) ) | 
						
							| 5 | 4 | ssrdv |  |-  ( D e. ( NN \ []NN ) -> ( Pell14QR ` D ) C_ RR ) | 
						
							| 6 | 2 5 | sstrid |  |-  ( D e. ( NN \ []NN ) -> { a e. ( Pell14QR ` D ) | 1 < a } C_ RR ) | 
						
							| 7 |  | pell1qrss14 |  |-  ( D e. ( NN \ []NN ) -> ( Pell1QR ` D ) C_ ( Pell14QR ` D ) ) | 
						
							| 8 |  | pellqrex |  |-  ( D e. ( NN \ []NN ) -> E. a e. ( Pell1QR ` D ) 1 < a ) | 
						
							| 9 |  | ssrexv |  |-  ( ( Pell1QR ` D ) C_ ( Pell14QR ` D ) -> ( E. a e. ( Pell1QR ` D ) 1 < a -> E. a e. ( Pell14QR ` D ) 1 < a ) ) | 
						
							| 10 | 7 8 9 | sylc |  |-  ( D e. ( NN \ []NN ) -> E. a e. ( Pell14QR ` D ) 1 < a ) | 
						
							| 11 |  | rabn0 |  |-  ( { a e. ( Pell14QR ` D ) | 1 < a } =/= (/) <-> E. a e. ( Pell14QR ` D ) 1 < a ) | 
						
							| 12 | 10 11 | sylibr |  |-  ( D e. ( NN \ []NN ) -> { a e. ( Pell14QR ` D ) | 1 < a } =/= (/) ) | 
						
							| 13 |  | 1re |  |-  1 e. RR | 
						
							| 14 |  | breq2 |  |-  ( a = c -> ( 1 < a <-> 1 < c ) ) | 
						
							| 15 | 14 | elrab |  |-  ( c e. { a e. ( Pell14QR ` D ) | 1 < a } <-> ( c e. ( Pell14QR ` D ) /\ 1 < c ) ) | 
						
							| 16 |  | pell14qrre |  |-  ( ( D e. ( NN \ []NN ) /\ c e. ( Pell14QR ` D ) ) -> c e. RR ) | 
						
							| 17 |  | ltle |  |-  ( ( 1 e. RR /\ c e. RR ) -> ( 1 < c -> 1 <_ c ) ) | 
						
							| 18 | 13 16 17 | sylancr |  |-  ( ( D e. ( NN \ []NN ) /\ c e. ( Pell14QR ` D ) ) -> ( 1 < c -> 1 <_ c ) ) | 
						
							| 19 | 18 | expimpd |  |-  ( D e. ( NN \ []NN ) -> ( ( c e. ( Pell14QR ` D ) /\ 1 < c ) -> 1 <_ c ) ) | 
						
							| 20 | 15 19 | biimtrid |  |-  ( D e. ( NN \ []NN ) -> ( c e. { a e. ( Pell14QR ` D ) | 1 < a } -> 1 <_ c ) ) | 
						
							| 21 | 20 | ralrimiv |  |-  ( D e. ( NN \ []NN ) -> A. c e. { a e. ( Pell14QR ` D ) | 1 < a } 1 <_ c ) | 
						
							| 22 |  | breq1 |  |-  ( b = 1 -> ( b <_ c <-> 1 <_ c ) ) | 
						
							| 23 | 22 | ralbidv |  |-  ( b = 1 -> ( A. c e. { a e. ( Pell14QR ` D ) | 1 < a } b <_ c <-> A. c e. { a e. ( Pell14QR ` D ) | 1 < a } 1 <_ c ) ) | 
						
							| 24 | 23 | rspcev |  |-  ( ( 1 e. RR /\ A. c e. { a e. ( Pell14QR ` D ) | 1 < a } 1 <_ c ) -> E. b e. RR A. c e. { a e. ( Pell14QR ` D ) | 1 < a } b <_ c ) | 
						
							| 25 | 13 21 24 | sylancr |  |-  ( D e. ( NN \ []NN ) -> E. b e. RR A. c e. { a e. ( Pell14QR ` D ) | 1 < a } b <_ c ) | 
						
							| 26 |  | infrecl |  |-  ( ( { a e. ( Pell14QR ` D ) | 1 < a } C_ RR /\ { a e. ( Pell14QR ` D ) | 1 < a } =/= (/) /\ E. b e. RR A. c e. { a e. ( Pell14QR ` D ) | 1 < a } b <_ c ) -> inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) e. RR ) | 
						
							| 27 | 6 12 25 26 | syl3anc |  |-  ( D e. ( NN \ []NN ) -> inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) e. RR ) | 
						
							| 28 | 1 27 | eqeltrd |  |-  ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. RR ) |