| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssrab2 |  |-  { a e. ( Pell14QR ` D ) | 1 < a } C_ ( Pell14QR ` D ) | 
						
							| 2 |  | pell14qrre |  |-  ( ( D e. ( NN \ []NN ) /\ a e. ( Pell14QR ` D ) ) -> a e. RR ) | 
						
							| 3 | 2 | ex |  |-  ( D e. ( NN \ []NN ) -> ( a e. ( Pell14QR ` D ) -> a e. RR ) ) | 
						
							| 4 | 3 | ssrdv |  |-  ( D e. ( NN \ []NN ) -> ( Pell14QR ` D ) C_ RR ) | 
						
							| 5 | 1 4 | sstrid |  |-  ( D e. ( NN \ []NN ) -> { a e. ( Pell14QR ` D ) | 1 < a } C_ RR ) | 
						
							| 6 |  | pell1qrss14 |  |-  ( D e. ( NN \ []NN ) -> ( Pell1QR ` D ) C_ ( Pell14QR ` D ) ) | 
						
							| 7 |  | pellqrex |  |-  ( D e. ( NN \ []NN ) -> E. a e. ( Pell1QR ` D ) 1 < a ) | 
						
							| 8 |  | ssrexv |  |-  ( ( Pell1QR ` D ) C_ ( Pell14QR ` D ) -> ( E. a e. ( Pell1QR ` D ) 1 < a -> E. a e. ( Pell14QR ` D ) 1 < a ) ) | 
						
							| 9 | 6 7 8 | sylc |  |-  ( D e. ( NN \ []NN ) -> E. a e. ( Pell14QR ` D ) 1 < a ) | 
						
							| 10 |  | rabn0 |  |-  ( { a e. ( Pell14QR ` D ) | 1 < a } =/= (/) <-> E. a e. ( Pell14QR ` D ) 1 < a ) | 
						
							| 11 | 9 10 | sylibr |  |-  ( D e. ( NN \ []NN ) -> { a e. ( Pell14QR ` D ) | 1 < a } =/= (/) ) | 
						
							| 12 |  | eldifi |  |-  ( D e. ( NN \ []NN ) -> D e. NN ) | 
						
							| 13 | 12 | peano2nnd |  |-  ( D e. ( NN \ []NN ) -> ( D + 1 ) e. NN ) | 
						
							| 14 | 13 | nnrpd |  |-  ( D e. ( NN \ []NN ) -> ( D + 1 ) e. RR+ ) | 
						
							| 15 | 14 | rpsqrtcld |  |-  ( D e. ( NN \ []NN ) -> ( sqrt ` ( D + 1 ) ) e. RR+ ) | 
						
							| 16 | 15 | rpred |  |-  ( D e. ( NN \ []NN ) -> ( sqrt ` ( D + 1 ) ) e. RR ) | 
						
							| 17 | 12 | nnrpd |  |-  ( D e. ( NN \ []NN ) -> D e. RR+ ) | 
						
							| 18 | 17 | rpsqrtcld |  |-  ( D e. ( NN \ []NN ) -> ( sqrt ` D ) e. RR+ ) | 
						
							| 19 | 18 | rpred |  |-  ( D e. ( NN \ []NN ) -> ( sqrt ` D ) e. RR ) | 
						
							| 20 | 16 19 | readdcld |  |-  ( D e. ( NN \ []NN ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) e. RR ) | 
						
							| 21 |  | breq2 |  |-  ( a = b -> ( 1 < a <-> 1 < b ) ) | 
						
							| 22 | 21 | elrab |  |-  ( b e. { a e. ( Pell14QR ` D ) | 1 < a } <-> ( b e. ( Pell14QR ` D ) /\ 1 < b ) ) | 
						
							| 23 |  | pell14qrgap |  |-  ( ( D e. ( NN \ []NN ) /\ b e. ( Pell14QR ` D ) /\ 1 < b ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ b ) | 
						
							| 24 | 23 | 3expib |  |-  ( D e. ( NN \ []NN ) -> ( ( b e. ( Pell14QR ` D ) /\ 1 < b ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ b ) ) | 
						
							| 25 | 22 24 | biimtrid |  |-  ( D e. ( NN \ []NN ) -> ( b e. { a e. ( Pell14QR ` D ) | 1 < a } -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ b ) ) | 
						
							| 26 | 25 | ralrimiv |  |-  ( D e. ( NN \ []NN ) -> A. b e. { a e. ( Pell14QR ` D ) | 1 < a } ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ b ) | 
						
							| 27 |  | infmrgelbi |  |-  ( ( ( { a e. ( Pell14QR ` D ) | 1 < a } C_ RR /\ { a e. ( Pell14QR ` D ) | 1 < a } =/= (/) /\ ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) e. RR ) /\ A. b e. { a e. ( Pell14QR ` D ) | 1 < a } ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ b ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) ) | 
						
							| 28 | 5 11 20 26 27 | syl31anc |  |-  ( D e. ( NN \ []NN ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) ) | 
						
							| 29 |  | pellfundval |  |-  ( D e. ( NN \ []NN ) -> ( PellFund ` D ) = inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) ) | 
						
							| 30 | 28 29 | breqtrrd |  |-  ( D e. ( NN \ []NN ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ ( PellFund ` D ) ) |