| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifi |  |-  ( D e. ( NN \ []NN ) -> D e. NN ) | 
						
							| 2 |  | eldifn |  |-  ( D e. ( NN \ []NN ) -> -. D e. []NN ) | 
						
							| 3 | 1 | anim1i |  |-  ( ( D e. ( NN \ []NN ) /\ ( sqrt ` D ) e. QQ ) -> ( D e. NN /\ ( sqrt ` D ) e. QQ ) ) | 
						
							| 4 |  | fveq2 |  |-  ( a = D -> ( sqrt ` a ) = ( sqrt ` D ) ) | 
						
							| 5 | 4 | eleq1d |  |-  ( a = D -> ( ( sqrt ` a ) e. QQ <-> ( sqrt ` D ) e. QQ ) ) | 
						
							| 6 |  | df-squarenn |  |-  []NN = { a e. NN | ( sqrt ` a ) e. QQ } | 
						
							| 7 | 5 6 | elrab2 |  |-  ( D e. []NN <-> ( D e. NN /\ ( sqrt ` D ) e. QQ ) ) | 
						
							| 8 | 3 7 | sylibr |  |-  ( ( D e. ( NN \ []NN ) /\ ( sqrt ` D ) e. QQ ) -> D e. []NN ) | 
						
							| 9 | 2 8 | mtand |  |-  ( D e. ( NN \ []NN ) -> -. ( sqrt ` D ) e. QQ ) | 
						
							| 10 |  | pellex |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> E. c e. NN E. d e. NN ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) | 
						
							| 11 | 1 9 10 | syl2anc |  |-  ( D e. ( NN \ []NN ) -> E. c e. NN E. d e. NN ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) | 
						
							| 12 |  | simpll |  |-  ( ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> D e. ( NN \ []NN ) ) | 
						
							| 13 |  | nnnn0 |  |-  ( c e. NN -> c e. NN0 ) | 
						
							| 14 | 13 | adantr |  |-  ( ( c e. NN /\ d e. NN ) -> c e. NN0 ) | 
						
							| 15 | 14 | ad2antlr |  |-  ( ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> c e. NN0 ) | 
						
							| 16 |  | nnnn0 |  |-  ( d e. NN -> d e. NN0 ) | 
						
							| 17 | 16 | adantl |  |-  ( ( c e. NN /\ d e. NN ) -> d e. NN0 ) | 
						
							| 18 | 17 | ad2antlr |  |-  ( ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> d e. NN0 ) | 
						
							| 19 |  | simpr |  |-  ( ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) | 
						
							| 20 |  | pellqrexplicit |  |-  ( ( ( D e. ( NN \ []NN ) /\ c e. NN0 /\ d e. NN0 ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> ( c + ( ( sqrt ` D ) x. d ) ) e. ( Pell1QR ` D ) ) | 
						
							| 21 | 12 15 18 19 20 | syl31anc |  |-  ( ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> ( c + ( ( sqrt ` D ) x. d ) ) e. ( Pell1QR ` D ) ) | 
						
							| 22 |  | 1re |  |-  1 e. RR | 
						
							| 23 | 22 | a1i |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> 1 e. RR ) | 
						
							| 24 | 22 22 | readdcli |  |-  ( 1 + 1 ) e. RR | 
						
							| 25 | 24 | a1i |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> ( 1 + 1 ) e. RR ) | 
						
							| 26 |  | nnre |  |-  ( c e. NN -> c e. RR ) | 
						
							| 27 | 26 | ad2antrl |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> c e. RR ) | 
						
							| 28 | 1 | adantr |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> D e. NN ) | 
						
							| 29 | 28 | nnrpd |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> D e. RR+ ) | 
						
							| 30 | 29 | rpsqrtcld |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> ( sqrt ` D ) e. RR+ ) | 
						
							| 31 | 30 | rpred |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> ( sqrt ` D ) e. RR ) | 
						
							| 32 |  | nnre |  |-  ( d e. NN -> d e. RR ) | 
						
							| 33 | 32 | ad2antll |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> d e. RR ) | 
						
							| 34 | 31 33 | remulcld |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> ( ( sqrt ` D ) x. d ) e. RR ) | 
						
							| 35 | 27 34 | readdcld |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> ( c + ( ( sqrt ` D ) x. d ) ) e. RR ) | 
						
							| 36 | 22 | ltp1i |  |-  1 < ( 1 + 1 ) | 
						
							| 37 | 36 | a1i |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> 1 < ( 1 + 1 ) ) | 
						
							| 38 |  | nnge1 |  |-  ( c e. NN -> 1 <_ c ) | 
						
							| 39 | 38 | ad2antrl |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> 1 <_ c ) | 
						
							| 40 |  | 1t1e1 |  |-  ( 1 x. 1 ) = 1 | 
						
							| 41 |  | nnge1 |  |-  ( D e. NN -> 1 <_ D ) | 
						
							| 42 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 43 | 42 | a1i |  |-  ( D e. NN -> ( 1 ^ 2 ) = 1 ) | 
						
							| 44 |  | nncn |  |-  ( D e. NN -> D e. CC ) | 
						
							| 45 | 44 | sqsqrtd |  |-  ( D e. NN -> ( ( sqrt ` D ) ^ 2 ) = D ) | 
						
							| 46 | 41 43 45 | 3brtr4d |  |-  ( D e. NN -> ( 1 ^ 2 ) <_ ( ( sqrt ` D ) ^ 2 ) ) | 
						
							| 47 | 22 | a1i |  |-  ( D e. NN -> 1 e. RR ) | 
						
							| 48 |  | nnrp |  |-  ( D e. NN -> D e. RR+ ) | 
						
							| 49 | 48 | rpsqrtcld |  |-  ( D e. NN -> ( sqrt ` D ) e. RR+ ) | 
						
							| 50 | 49 | rpred |  |-  ( D e. NN -> ( sqrt ` D ) e. RR ) | 
						
							| 51 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 52 | 51 | a1i |  |-  ( D e. NN -> 0 <_ 1 ) | 
						
							| 53 | 49 | rpge0d |  |-  ( D e. NN -> 0 <_ ( sqrt ` D ) ) | 
						
							| 54 | 47 50 52 53 | le2sqd |  |-  ( D e. NN -> ( 1 <_ ( sqrt ` D ) <-> ( 1 ^ 2 ) <_ ( ( sqrt ` D ) ^ 2 ) ) ) | 
						
							| 55 | 46 54 | mpbird |  |-  ( D e. NN -> 1 <_ ( sqrt ` D ) ) | 
						
							| 56 | 28 55 | syl |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> 1 <_ ( sqrt ` D ) ) | 
						
							| 57 |  | nnge1 |  |-  ( d e. NN -> 1 <_ d ) | 
						
							| 58 | 57 | ad2antll |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> 1 <_ d ) | 
						
							| 59 | 23 51 | jctir |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> ( 1 e. RR /\ 0 <_ 1 ) ) | 
						
							| 60 |  | lemul12a |  |-  ( ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( sqrt ` D ) e. RR ) /\ ( ( 1 e. RR /\ 0 <_ 1 ) /\ d e. RR ) ) -> ( ( 1 <_ ( sqrt ` D ) /\ 1 <_ d ) -> ( 1 x. 1 ) <_ ( ( sqrt ` D ) x. d ) ) ) | 
						
							| 61 | 59 31 59 33 60 | syl22anc |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> ( ( 1 <_ ( sqrt ` D ) /\ 1 <_ d ) -> ( 1 x. 1 ) <_ ( ( sqrt ` D ) x. d ) ) ) | 
						
							| 62 | 56 58 61 | mp2and |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> ( 1 x. 1 ) <_ ( ( sqrt ` D ) x. d ) ) | 
						
							| 63 | 40 62 | eqbrtrrid |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> 1 <_ ( ( sqrt ` D ) x. d ) ) | 
						
							| 64 | 23 23 27 34 39 63 | le2addd |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> ( 1 + 1 ) <_ ( c + ( ( sqrt ` D ) x. d ) ) ) | 
						
							| 65 | 23 25 35 37 64 | ltletrd |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> 1 < ( c + ( ( sqrt ` D ) x. d ) ) ) | 
						
							| 66 | 65 | adantr |  |-  ( ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> 1 < ( c + ( ( sqrt ` D ) x. d ) ) ) | 
						
							| 67 |  | breq2 |  |-  ( x = ( c + ( ( sqrt ` D ) x. d ) ) -> ( 1 < x <-> 1 < ( c + ( ( sqrt ` D ) x. d ) ) ) ) | 
						
							| 68 | 67 | rspcev |  |-  ( ( ( c + ( ( sqrt ` D ) x. d ) ) e. ( Pell1QR ` D ) /\ 1 < ( c + ( ( sqrt ` D ) x. d ) ) ) -> E. x e. ( Pell1QR ` D ) 1 < x ) | 
						
							| 69 | 21 66 68 | syl2anc |  |-  ( ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> E. x e. ( Pell1QR ` D ) 1 < x ) | 
						
							| 70 | 69 | ex |  |-  ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> ( ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 -> E. x e. ( Pell1QR ` D ) 1 < x ) ) | 
						
							| 71 | 70 | rexlimdvva |  |-  ( D e. ( NN \ []NN ) -> ( E. c e. NN E. d e. NN ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 -> E. x e. ( Pell1QR ` D ) 1 < x ) ) | 
						
							| 72 | 11 71 | mpd |  |-  ( D e. ( NN \ []NN ) -> E. x e. ( Pell1QR ` D ) 1 < x ) |