| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfi |  |-  ( 0 ... ( ( abs ` a ) - 1 ) ) e. Fin | 
						
							| 2 |  | xpfi |  |-  ( ( ( 0 ... ( ( abs ` a ) - 1 ) ) e. Fin /\ ( 0 ... ( ( abs ` a ) - 1 ) ) e. Fin ) -> ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) e. Fin ) | 
						
							| 3 | 1 1 2 | mp2an |  |-  ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) e. Fin | 
						
							| 4 |  | isfinite |  |-  ( ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) e. Fin <-> ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ~< _om ) | 
						
							| 5 | 3 4 | mpbi |  |-  ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ~< _om | 
						
							| 6 |  | nnenom |  |-  NN ~~ _om | 
						
							| 7 | 6 | ensymi |  |-  _om ~~ NN | 
						
							| 8 |  | sdomentr |  |-  ( ( ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ~< _om /\ _om ~~ NN ) -> ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ~< NN ) | 
						
							| 9 | 5 7 8 | mp2an |  |-  ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ~< NN | 
						
							| 10 |  | ensym |  |-  ( { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ~~ NN -> NN ~~ { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ) | 
						
							| 11 | 10 | ad2antll |  |-  ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ ( a =/= 0 /\ { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ~~ NN ) ) -> NN ~~ { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ) | 
						
							| 12 |  | sdomentr |  |-  ( ( ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ~< NN /\ NN ~~ { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ) -> ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ~< { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ) | 
						
							| 13 | 9 11 12 | sylancr |  |-  ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ ( a =/= 0 /\ { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ~~ NN ) ) -> ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ~< { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ) | 
						
							| 14 |  | opabssxp |  |-  { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } C_ ( NN X. NN ) | 
						
							| 15 | 14 | sseli |  |-  ( d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } -> d e. ( NN X. NN ) ) | 
						
							| 16 |  | simprrl |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) -> ( 1st ` d ) e. NN ) | 
						
							| 17 | 16 | nnzd |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) -> ( 1st ` d ) e. ZZ ) | 
						
							| 18 |  | simpllr |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) -> a e. ZZ ) | 
						
							| 19 |  | simplr |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) -> a =/= 0 ) | 
						
							| 20 |  | nnabscl |  |-  ( ( a e. ZZ /\ a =/= 0 ) -> ( abs ` a ) e. NN ) | 
						
							| 21 | 18 19 20 | syl2anc |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) -> ( abs ` a ) e. NN ) | 
						
							| 22 |  | zmodfz |  |-  ( ( ( 1st ` d ) e. ZZ /\ ( abs ` a ) e. NN ) -> ( ( 1st ` d ) mod ( abs ` a ) ) e. ( 0 ... ( ( abs ` a ) - 1 ) ) ) | 
						
							| 23 | 17 21 22 | syl2anc |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) -> ( ( 1st ` d ) mod ( abs ` a ) ) e. ( 0 ... ( ( abs ` a ) - 1 ) ) ) | 
						
							| 24 |  | simprrr |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) -> ( 2nd ` d ) e. NN ) | 
						
							| 25 | 24 | nnzd |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) -> ( 2nd ` d ) e. ZZ ) | 
						
							| 26 |  | zmodfz |  |-  ( ( ( 2nd ` d ) e. ZZ /\ ( abs ` a ) e. NN ) -> ( ( 2nd ` d ) mod ( abs ` a ) ) e. ( 0 ... ( ( abs ` a ) - 1 ) ) ) | 
						
							| 27 | 25 21 26 | syl2anc |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) -> ( ( 2nd ` d ) mod ( abs ` a ) ) e. ( 0 ... ( ( abs ` a ) - 1 ) ) ) | 
						
							| 28 | 23 27 | jca |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) -> ( ( ( 1st ` d ) mod ( abs ` a ) ) e. ( 0 ... ( ( abs ` a ) - 1 ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) e. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ) | 
						
							| 29 | 28 | ex |  |-  ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) -> ( ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) -> ( ( ( 1st ` d ) mod ( abs ` a ) ) e. ( 0 ... ( ( abs ` a ) - 1 ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) e. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ) ) | 
						
							| 30 |  | elxp7 |  |-  ( d e. ( NN X. NN ) <-> ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) | 
						
							| 31 |  | opelxp |  |-  ( <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. e. ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) <-> ( ( ( 1st ` d ) mod ( abs ` a ) ) e. ( 0 ... ( ( abs ` a ) - 1 ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) e. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ) | 
						
							| 32 | 29 30 31 | 3imtr4g |  |-  ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) -> ( d e. ( NN X. NN ) -> <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. e. ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ) ) | 
						
							| 33 | 15 32 | syl5 |  |-  ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) -> ( d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } -> <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. e. ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ) ) | 
						
							| 34 | 33 | imp |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ) -> <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. e. ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ) | 
						
							| 35 | 34 | adantlrr |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ ( a =/= 0 /\ { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ~~ NN ) ) /\ d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ) -> <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. e. ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ) | 
						
							| 36 |  | fveq2 |  |-  ( d = e -> ( 1st ` d ) = ( 1st ` e ) ) | 
						
							| 37 | 36 | oveq1d |  |-  ( d = e -> ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) ) | 
						
							| 38 |  | fveq2 |  |-  ( d = e -> ( 2nd ` d ) = ( 2nd ` e ) ) | 
						
							| 39 | 38 | oveq1d |  |-  ( d = e -> ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) | 
						
							| 40 | 37 39 | opeq12d |  |-  ( d = e -> <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) | 
						
							| 41 | 13 35 40 | fphpd |  |-  ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ ( a =/= 0 /\ { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ~~ NN ) ) -> E. d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } E. e e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) | 
						
							| 42 |  | eleq1w |  |-  ( b = f -> ( b e. NN <-> f e. NN ) ) | 
						
							| 43 |  | eleq1w |  |-  ( c = g -> ( c e. NN <-> g e. NN ) ) | 
						
							| 44 | 42 43 | bi2anan9 |  |-  ( ( b = f /\ c = g ) -> ( ( b e. NN /\ c e. NN ) <-> ( f e. NN /\ g e. NN ) ) ) | 
						
							| 45 |  | oveq1 |  |-  ( b = f -> ( b ^ 2 ) = ( f ^ 2 ) ) | 
						
							| 46 |  | oveq1 |  |-  ( c = g -> ( c ^ 2 ) = ( g ^ 2 ) ) | 
						
							| 47 | 46 | oveq2d |  |-  ( c = g -> ( D x. ( c ^ 2 ) ) = ( D x. ( g ^ 2 ) ) ) | 
						
							| 48 | 45 47 | oveqan12d |  |-  ( ( b = f /\ c = g ) -> ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) ) | 
						
							| 49 | 48 | eqeq1d |  |-  ( ( b = f /\ c = g ) -> ( ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a <-> ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) | 
						
							| 50 | 44 49 | anbi12d |  |-  ( ( b = f /\ c = g ) -> ( ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) <-> ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) ) | 
						
							| 51 | 50 | cbvopabv |  |-  { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } = { <. f , g >. | ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) } | 
						
							| 52 | 51 | eleq2i |  |-  ( e e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } <-> e e. { <. f , g >. | ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) } ) | 
						
							| 53 | 52 | biimpi |  |-  ( e e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } -> e e. { <. f , g >. | ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) } ) | 
						
							| 54 |  | elopab |  |-  ( d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } <-> E. b E. c ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) | 
						
							| 55 |  | elopab |  |-  ( e e. { <. f , g >. | ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) } <-> E. f E. g ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) ) | 
						
							| 56 |  | simp3ll |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) -> b e. NN ) | 
						
							| 57 | 56 | 3expb |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) -> b e. NN ) | 
						
							| 58 | 57 | 3ad2ant1 |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> b e. NN ) | 
						
							| 59 |  | simp3lr |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) -> c e. NN ) | 
						
							| 60 | 59 | 3expb |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) -> c e. NN ) | 
						
							| 61 | 60 | 3ad2ant1 |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> c e. NN ) | 
						
							| 62 |  | simp1lr |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> a e. ZZ ) | 
						
							| 63 | 62 | 3adant1r |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> a e. ZZ ) | 
						
							| 64 |  | simp-4l |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) -> D e. NN ) | 
						
							| 65 | 64 | 3ad2ant1 |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> D e. NN ) | 
						
							| 66 |  | simp-4r |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) -> -. ( sqrt ` D ) e. QQ ) | 
						
							| 67 | 66 | 3ad2ant1 |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> -. ( sqrt ` D ) e. QQ ) | 
						
							| 68 |  | simp2ll |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> f e. NN ) | 
						
							| 69 | 68 | 3adant2l |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> f e. NN ) | 
						
							| 70 |  | simp2lr |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> g e. NN ) | 
						
							| 71 | 70 | 3adant2l |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> g e. NN ) | 
						
							| 72 |  | simp2l |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> e = <. f , g >. ) | 
						
							| 73 |  | simp1rl |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> d = <. b , c >. ) | 
						
							| 74 |  | simp3l |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> d =/= e ) | 
						
							| 75 |  | simp3 |  |-  ( ( e = <. f , g >. /\ d = <. b , c >. /\ d =/= e ) -> d =/= e ) | 
						
							| 76 |  | simp2 |  |-  ( ( e = <. f , g >. /\ d = <. b , c >. /\ d =/= e ) -> d = <. b , c >. ) | 
						
							| 77 |  | simp1 |  |-  ( ( e = <. f , g >. /\ d = <. b , c >. /\ d =/= e ) -> e = <. f , g >. ) | 
						
							| 78 | 75 76 77 | 3netr3d |  |-  ( ( e = <. f , g >. /\ d = <. b , c >. /\ d =/= e ) -> <. b , c >. =/= <. f , g >. ) | 
						
							| 79 |  | vex |  |-  b e. _V | 
						
							| 80 |  | vex |  |-  c e. _V | 
						
							| 81 | 79 80 | opth |  |-  ( <. b , c >. = <. f , g >. <-> ( b = f /\ c = g ) ) | 
						
							| 82 | 81 | necon3abii |  |-  ( <. b , c >. =/= <. f , g >. <-> -. ( b = f /\ c = g ) ) | 
						
							| 83 | 78 82 | sylib |  |-  ( ( e = <. f , g >. /\ d = <. b , c >. /\ d =/= e ) -> -. ( b = f /\ c = g ) ) | 
						
							| 84 | 72 73 74 83 | syl3anc |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> -. ( b = f /\ c = g ) ) | 
						
							| 85 |  | simp1lr |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> a =/= 0 ) | 
						
							| 86 |  | simp1rr |  |-  ( ( ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) | 
						
							| 87 | 86 | 3adant1l |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) | 
						
							| 88 |  | simp2rr |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) | 
						
							| 89 |  | simp3r |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) | 
						
							| 90 |  | simp3 |  |-  ( ( d = <. b , c >. /\ e = <. f , g >. /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) | 
						
							| 91 |  | ovex |  |-  ( ( 1st ` d ) mod ( abs ` a ) ) e. _V | 
						
							| 92 |  | ovex |  |-  ( ( 2nd ` d ) mod ( abs ` a ) ) e. _V | 
						
							| 93 | 91 92 | opth |  |-  ( <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. <-> ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) | 
						
							| 94 | 90 93 | sylib |  |-  ( ( d = <. b , c >. /\ e = <. f , g >. /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) | 
						
							| 95 |  | simprl |  |-  ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) ) | 
						
							| 96 |  | simpll |  |-  ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> d = <. b , c >. ) | 
						
							| 97 | 96 | fveq2d |  |-  ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( 1st ` d ) = ( 1st ` <. b , c >. ) ) | 
						
							| 98 | 79 80 | op1st |  |-  ( 1st ` <. b , c >. ) = b | 
						
							| 99 | 97 98 | eqtrdi |  |-  ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( 1st ` d ) = b ) | 
						
							| 100 | 99 | oveq1d |  |-  ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( ( 1st ` d ) mod ( abs ` a ) ) = ( b mod ( abs ` a ) ) ) | 
						
							| 101 |  | simplr |  |-  ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> e = <. f , g >. ) | 
						
							| 102 | 101 | fveq2d |  |-  ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( 1st ` e ) = ( 1st ` <. f , g >. ) ) | 
						
							| 103 |  | vex |  |-  f e. _V | 
						
							| 104 |  | vex |  |-  g e. _V | 
						
							| 105 | 103 104 | op1st |  |-  ( 1st ` <. f , g >. ) = f | 
						
							| 106 | 102 105 | eqtrdi |  |-  ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( 1st ` e ) = f ) | 
						
							| 107 | 106 | oveq1d |  |-  ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( ( 1st ` e ) mod ( abs ` a ) ) = ( f mod ( abs ` a ) ) ) | 
						
							| 108 | 95 100 107 | 3eqtr3d |  |-  ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( b mod ( abs ` a ) ) = ( f mod ( abs ` a ) ) ) | 
						
							| 109 |  | simprr |  |-  ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) | 
						
							| 110 | 96 | fveq2d |  |-  ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( 2nd ` d ) = ( 2nd ` <. b , c >. ) ) | 
						
							| 111 | 79 80 | op2nd |  |-  ( 2nd ` <. b , c >. ) = c | 
						
							| 112 | 110 111 | eqtrdi |  |-  ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( 2nd ` d ) = c ) | 
						
							| 113 | 112 | oveq1d |  |-  ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( ( 2nd ` d ) mod ( abs ` a ) ) = ( c mod ( abs ` a ) ) ) | 
						
							| 114 | 101 | fveq2d |  |-  ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( 2nd ` e ) = ( 2nd ` <. f , g >. ) ) | 
						
							| 115 | 103 104 | op2nd |  |-  ( 2nd ` <. f , g >. ) = g | 
						
							| 116 | 114 115 | eqtrdi |  |-  ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( 2nd ` e ) = g ) | 
						
							| 117 | 116 | oveq1d |  |-  ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( ( 2nd ` e ) mod ( abs ` a ) ) = ( g mod ( abs ` a ) ) ) | 
						
							| 118 | 109 113 117 | 3eqtr3d |  |-  ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( c mod ( abs ` a ) ) = ( g mod ( abs ` a ) ) ) | 
						
							| 119 | 108 118 | jca |  |-  ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( ( b mod ( abs ` a ) ) = ( f mod ( abs ` a ) ) /\ ( c mod ( abs ` a ) ) = ( g mod ( abs ` a ) ) ) ) | 
						
							| 120 | 119 | ex |  |-  ( ( d = <. b , c >. /\ e = <. f , g >. ) -> ( ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) -> ( ( b mod ( abs ` a ) ) = ( f mod ( abs ` a ) ) /\ ( c mod ( abs ` a ) ) = ( g mod ( abs ` a ) ) ) ) ) | 
						
							| 121 | 120 | 3adant3 |  |-  ( ( d = <. b , c >. /\ e = <. f , g >. /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> ( ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) -> ( ( b mod ( abs ` a ) ) = ( f mod ( abs ` a ) ) /\ ( c mod ( abs ` a ) ) = ( g mod ( abs ` a ) ) ) ) ) | 
						
							| 122 | 94 121 | mpd |  |-  ( ( d = <. b , c >. /\ e = <. f , g >. /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> ( ( b mod ( abs ` a ) ) = ( f mod ( abs ` a ) ) /\ ( c mod ( abs ` a ) ) = ( g mod ( abs ` a ) ) ) ) | 
						
							| 123 | 73 72 89 122 | syl3anc |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> ( ( b mod ( abs ` a ) ) = ( f mod ( abs ` a ) ) /\ ( c mod ( abs ` a ) ) = ( g mod ( abs ` a ) ) ) ) | 
						
							| 124 | 123 | simpld |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> ( b mod ( abs ` a ) ) = ( f mod ( abs ` a ) ) ) | 
						
							| 125 | 123 | simprd |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> ( c mod ( abs ` a ) ) = ( g mod ( abs ` a ) ) ) | 
						
							| 126 | 58 61 63 65 67 69 71 84 85 87 88 124 125 | pellexlem6 |  |-  ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) | 
						
							| 127 | 126 | 3exp |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) -> ( ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) -> ( ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 128 | 127 | exlimdvv |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) -> ( E. f E. g ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) -> ( ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 129 | 55 128 | biimtrid |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) -> ( e e. { <. f , g >. | ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) } -> ( ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 130 | 129 | ex |  |-  ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) -> ( ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) -> ( e e. { <. f , g >. | ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) } -> ( ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 131 | 130 | exlimdvv |  |-  ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) -> ( E. b E. c ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) -> ( e e. { <. f , g >. | ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) } -> ( ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 132 | 54 131 | biimtrid |  |-  ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) -> ( d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } -> ( e e. { <. f , g >. | ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) } -> ( ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 133 | 132 | impd |  |-  ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) -> ( ( d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } /\ e e. { <. f , g >. | ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) } ) -> ( ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 134 | 53 133 | sylan2i |  |-  ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) -> ( ( d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } /\ e e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ) -> ( ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 135 | 134 | rexlimdvv |  |-  ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) -> ( E. d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } E. e e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) ) | 
						
							| 136 | 135 | imp |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ E. d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } E. e e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) | 
						
							| 137 | 136 | adantlrr |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ ( a =/= 0 /\ { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ~~ NN ) ) /\ E. d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } E. e e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) | 
						
							| 138 | 41 137 | mpdan |  |-  ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ ( a =/= 0 /\ { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ~~ NN ) ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) | 
						
							| 139 |  | pellexlem5 |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> E. a e. ZZ ( a =/= 0 /\ { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ~~ NN ) ) | 
						
							| 140 | 138 139 | r19.29a |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) |