| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfi | ⊢ ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ∈  Fin | 
						
							| 2 |  | xpfi | ⊢ ( ( ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ∈  Fin  ∧  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ∈  Fin )  →  ( ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ×  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) )  ∈  Fin ) | 
						
							| 3 | 1 1 2 | mp2an | ⊢ ( ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ×  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) )  ∈  Fin | 
						
							| 4 |  | isfinite | ⊢ ( ( ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ×  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) )  ∈  Fin  ↔  ( ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ×  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) )  ≺  ω ) | 
						
							| 5 | 3 4 | mpbi | ⊢ ( ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ×  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) )  ≺  ω | 
						
							| 6 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 7 | 6 | ensymi | ⊢ ω  ≈  ℕ | 
						
							| 8 |  | sdomentr | ⊢ ( ( ( ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ×  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) )  ≺  ω  ∧  ω  ≈  ℕ )  →  ( ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ×  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) )  ≺  ℕ ) | 
						
							| 9 | 5 7 8 | mp2an | ⊢ ( ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ×  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) )  ≺  ℕ | 
						
							| 10 |  | ensym | ⊢ ( { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) }  ≈  ℕ  →  ℕ  ≈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) } ) | 
						
							| 11 | 10 | ad2antll | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  ( 𝑎  ≠  0  ∧  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) }  ≈  ℕ ) )  →  ℕ  ≈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) } ) | 
						
							| 12 |  | sdomentr | ⊢ ( ( ( ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ×  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) )  ≺  ℕ  ∧  ℕ  ≈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) } )  →  ( ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ×  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) )  ≺  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) } ) | 
						
							| 13 | 9 11 12 | sylancr | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  ( 𝑎  ≠  0  ∧  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) }  ≈  ℕ ) )  →  ( ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ×  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) )  ≺  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) } ) | 
						
							| 14 |  | opabssxp | ⊢ { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) }  ⊆  ( ℕ  ×  ℕ ) | 
						
							| 15 | 14 | sseli | ⊢ ( 𝑑  ∈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) }  →  𝑑  ∈  ( ℕ  ×  ℕ ) ) | 
						
							| 16 |  | simprrl | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  ∈  ( V  ×  V )  ∧  ( ( 1st  ‘ 𝑑 )  ∈  ℕ  ∧  ( 2nd  ‘ 𝑑 )  ∈  ℕ ) ) )  →  ( 1st  ‘ 𝑑 )  ∈  ℕ ) | 
						
							| 17 | 16 | nnzd | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  ∈  ( V  ×  V )  ∧  ( ( 1st  ‘ 𝑑 )  ∈  ℕ  ∧  ( 2nd  ‘ 𝑑 )  ∈  ℕ ) ) )  →  ( 1st  ‘ 𝑑 )  ∈  ℤ ) | 
						
							| 18 |  | simpllr | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  ∈  ( V  ×  V )  ∧  ( ( 1st  ‘ 𝑑 )  ∈  ℕ  ∧  ( 2nd  ‘ 𝑑 )  ∈  ℕ ) ) )  →  𝑎  ∈  ℤ ) | 
						
							| 19 |  | simplr | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  ∈  ( V  ×  V )  ∧  ( ( 1st  ‘ 𝑑 )  ∈  ℕ  ∧  ( 2nd  ‘ 𝑑 )  ∈  ℕ ) ) )  →  𝑎  ≠  0 ) | 
						
							| 20 |  | nnabscl | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑎  ≠  0 )  →  ( abs ‘ 𝑎 )  ∈  ℕ ) | 
						
							| 21 | 18 19 20 | syl2anc | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  ∈  ( V  ×  V )  ∧  ( ( 1st  ‘ 𝑑 )  ∈  ℕ  ∧  ( 2nd  ‘ 𝑑 )  ∈  ℕ ) ) )  →  ( abs ‘ 𝑎 )  ∈  ℕ ) | 
						
							| 22 |  | zmodfz | ⊢ ( ( ( 1st  ‘ 𝑑 )  ∈  ℤ  ∧  ( abs ‘ 𝑎 )  ∈  ℕ )  →  ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  ∈  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) ) | 
						
							| 23 | 17 21 22 | syl2anc | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  ∈  ( V  ×  V )  ∧  ( ( 1st  ‘ 𝑑 )  ∈  ℕ  ∧  ( 2nd  ‘ 𝑑 )  ∈  ℕ ) ) )  →  ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  ∈  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) ) | 
						
							| 24 |  | simprrr | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  ∈  ( V  ×  V )  ∧  ( ( 1st  ‘ 𝑑 )  ∈  ℕ  ∧  ( 2nd  ‘ 𝑑 )  ∈  ℕ ) ) )  →  ( 2nd  ‘ 𝑑 )  ∈  ℕ ) | 
						
							| 25 | 24 | nnzd | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  ∈  ( V  ×  V )  ∧  ( ( 1st  ‘ 𝑑 )  ∈  ℕ  ∧  ( 2nd  ‘ 𝑑 )  ∈  ℕ ) ) )  →  ( 2nd  ‘ 𝑑 )  ∈  ℤ ) | 
						
							| 26 |  | zmodfz | ⊢ ( ( ( 2nd  ‘ 𝑑 )  ∈  ℤ  ∧  ( abs ‘ 𝑎 )  ∈  ℕ )  →  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  ∈  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) ) | 
						
							| 27 | 25 21 26 | syl2anc | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  ∈  ( V  ×  V )  ∧  ( ( 1st  ‘ 𝑑 )  ∈  ℕ  ∧  ( 2nd  ‘ 𝑑 )  ∈  ℕ ) ) )  →  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  ∈  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) ) | 
						
							| 28 | 23 27 | jca | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  ∈  ( V  ×  V )  ∧  ( ( 1st  ‘ 𝑑 )  ∈  ℕ  ∧  ( 2nd  ‘ 𝑑 )  ∈  ℕ ) ) )  →  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  ∈  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  ∈  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) ) ) | 
						
							| 29 | 28 | ex | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  →  ( ( 𝑑  ∈  ( V  ×  V )  ∧  ( ( 1st  ‘ 𝑑 )  ∈  ℕ  ∧  ( 2nd  ‘ 𝑑 )  ∈  ℕ ) )  →  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  ∈  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  ∈  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) ) ) ) | 
						
							| 30 |  | elxp7 | ⊢ ( 𝑑  ∈  ( ℕ  ×  ℕ )  ↔  ( 𝑑  ∈  ( V  ×  V )  ∧  ( ( 1st  ‘ 𝑑 )  ∈  ℕ  ∧  ( 2nd  ‘ 𝑑 )  ∈  ℕ ) ) ) | 
						
							| 31 |  | opelxp | ⊢ ( 〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  ∈  ( ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ×  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) )  ↔  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  ∈  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  ∈  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) ) ) | 
						
							| 32 | 29 30 31 | 3imtr4g | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  →  ( 𝑑  ∈  ( ℕ  ×  ℕ )  →  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  ∈  ( ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ×  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) ) ) ) | 
						
							| 33 | 15 32 | syl5 | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  →  ( 𝑑  ∈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) }  →  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  ∈  ( ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ×  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) ) ) ) | 
						
							| 34 | 33 | imp | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  𝑑  ∈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) } )  →  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  ∈  ( ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ×  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) ) ) | 
						
							| 35 | 34 | adantlrr | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  ( 𝑎  ≠  0  ∧  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) }  ≈  ℕ ) )  ∧  𝑑  ∈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) } )  →  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  ∈  ( ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) )  ×  ( 0 ... ( ( abs ‘ 𝑎 )  −  1 ) ) ) ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑑  =  𝑒  →  ( 1st  ‘ 𝑑 )  =  ( 1st  ‘ 𝑒 ) ) | 
						
							| 37 | 36 | oveq1d | ⊢ ( 𝑑  =  𝑒  →  ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) | 
						
							| 38 |  | fveq2 | ⊢ ( 𝑑  =  𝑒  →  ( 2nd  ‘ 𝑑 )  =  ( 2nd  ‘ 𝑒 ) ) | 
						
							| 39 | 38 | oveq1d | ⊢ ( 𝑑  =  𝑒  →  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) | 
						
							| 40 | 37 39 | opeq12d | ⊢ ( 𝑑  =  𝑒  →  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) | 
						
							| 41 | 13 35 40 | fphpd | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  ( 𝑎  ≠  0  ∧  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) }  ≈  ℕ ) )  →  ∃ 𝑑  ∈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) } ∃ 𝑒  ∈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) } ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) ) | 
						
							| 42 |  | eleq1w | ⊢ ( 𝑏  =  𝑓  →  ( 𝑏  ∈  ℕ  ↔  𝑓  ∈  ℕ ) ) | 
						
							| 43 |  | eleq1w | ⊢ ( 𝑐  =  𝑔  →  ( 𝑐  ∈  ℕ  ↔  𝑔  ∈  ℕ ) ) | 
						
							| 44 | 42 43 | bi2anan9 | ⊢ ( ( 𝑏  =  𝑓  ∧  𝑐  =  𝑔 )  →  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ↔  ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ ) ) ) | 
						
							| 45 |  | oveq1 | ⊢ ( 𝑏  =  𝑓  →  ( 𝑏 ↑ 2 )  =  ( 𝑓 ↑ 2 ) ) | 
						
							| 46 |  | oveq1 | ⊢ ( 𝑐  =  𝑔  →  ( 𝑐 ↑ 2 )  =  ( 𝑔 ↑ 2 ) ) | 
						
							| 47 | 46 | oveq2d | ⊢ ( 𝑐  =  𝑔  →  ( 𝐷  ·  ( 𝑐 ↑ 2 ) )  =  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) ) | 
						
							| 48 | 45 47 | oveqan12d | ⊢ ( ( 𝑏  =  𝑓  ∧  𝑐  =  𝑔 )  →  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) ) ) | 
						
							| 49 | 48 | eqeq1d | ⊢ ( ( 𝑏  =  𝑓  ∧  𝑐  =  𝑔 )  →  ( ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎  ↔  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) ) | 
						
							| 50 | 44 49 | anbi12d | ⊢ ( ( 𝑏  =  𝑓  ∧  𝑐  =  𝑔 )  →  ( ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 )  ↔  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) ) ) | 
						
							| 51 | 50 | cbvopabv | ⊢ { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) }  =  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) } | 
						
							| 52 | 51 | eleq2i | ⊢ ( 𝑒  ∈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) }  ↔  𝑒  ∈  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) } ) | 
						
							| 53 | 52 | biimpi | ⊢ ( 𝑒  ∈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) }  →  𝑒  ∈  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) } ) | 
						
							| 54 |  | elopab | ⊢ ( 𝑑  ∈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) }  ↔  ∃ 𝑏 ∃ 𝑐 ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) ) | 
						
							| 55 |  | elopab | ⊢ ( 𝑒  ∈  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) }  ↔  ∃ 𝑓 ∃ 𝑔 ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) ) ) | 
						
							| 56 |  | simp3ll | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) )  →  𝑏  ∈  ℕ ) | 
						
							| 57 | 56 | 3expb | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  →  𝑏  ∈  ℕ ) | 
						
							| 58 | 57 | 3ad2ant1 | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  𝑏  ∈  ℕ ) | 
						
							| 59 |  | simp3lr | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) )  →  𝑐  ∈  ℕ ) | 
						
							| 60 | 59 | 3expb | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  →  𝑐  ∈  ℕ ) | 
						
							| 61 | 60 | 3ad2ant1 | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  𝑐  ∈  ℕ ) | 
						
							| 62 |  | simp1lr | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  𝑎  ∈  ℤ ) | 
						
							| 63 | 62 | 3adant1r | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  𝑎  ∈  ℤ ) | 
						
							| 64 |  | simp-4l | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  →  𝐷  ∈  ℕ ) | 
						
							| 65 | 64 | 3ad2ant1 | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  𝐷  ∈  ℕ ) | 
						
							| 66 |  | simp-4r | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  →  ¬  ( √ ‘ 𝐷 )  ∈  ℚ ) | 
						
							| 67 | 66 | 3ad2ant1 | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  ¬  ( √ ‘ 𝐷 )  ∈  ℚ ) | 
						
							| 68 |  | simp2ll | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  𝑓  ∈  ℕ ) | 
						
							| 69 | 68 | 3adant2l | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  𝑓  ∈  ℕ ) | 
						
							| 70 |  | simp2lr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  𝑔  ∈  ℕ ) | 
						
							| 71 | 70 | 3adant2l | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  𝑔  ∈  ℕ ) | 
						
							| 72 |  | simp2l | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  𝑒  =  〈 𝑓 ,  𝑔 〉 ) | 
						
							| 73 |  | simp1rl | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  𝑑  =  〈 𝑏 ,  𝑐 〉 ) | 
						
							| 74 |  | simp3l | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  𝑑  ≠  𝑒 ) | 
						
							| 75 |  | simp3 | ⊢ ( ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑑  ≠  𝑒 )  →  𝑑  ≠  𝑒 ) | 
						
							| 76 |  | simp2 | ⊢ ( ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑑  ≠  𝑒 )  →  𝑑  =  〈 𝑏 ,  𝑐 〉 ) | 
						
							| 77 |  | simp1 | ⊢ ( ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑑  ≠  𝑒 )  →  𝑒  =  〈 𝑓 ,  𝑔 〉 ) | 
						
							| 78 | 75 76 77 | 3netr3d | ⊢ ( ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑑  ≠  𝑒 )  →  〈 𝑏 ,  𝑐 〉  ≠  〈 𝑓 ,  𝑔 〉 ) | 
						
							| 79 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 80 |  | vex | ⊢ 𝑐  ∈  V | 
						
							| 81 | 79 80 | opth | ⊢ ( 〈 𝑏 ,  𝑐 〉  =  〈 𝑓 ,  𝑔 〉  ↔  ( 𝑏  =  𝑓  ∧  𝑐  =  𝑔 ) ) | 
						
							| 82 | 81 | necon3abii | ⊢ ( 〈 𝑏 ,  𝑐 〉  ≠  〈 𝑓 ,  𝑔 〉  ↔  ¬  ( 𝑏  =  𝑓  ∧  𝑐  =  𝑔 ) ) | 
						
							| 83 | 78 82 | sylib | ⊢ ( ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑑  ≠  𝑒 )  →  ¬  ( 𝑏  =  𝑓  ∧  𝑐  =  𝑔 ) ) | 
						
							| 84 | 72 73 74 83 | syl3anc | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  ¬  ( 𝑏  =  𝑓  ∧  𝑐  =  𝑔 ) ) | 
						
							| 85 |  | simp1lr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  𝑎  ≠  0 ) | 
						
							| 86 |  | simp1rr | ⊢ ( ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) | 
						
							| 87 | 86 | 3adant1l | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) | 
						
							| 88 |  | simp2rr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) | 
						
							| 89 |  | simp3r | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) | 
						
							| 90 |  | simp3 | ⊢ ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 )  →  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) | 
						
							| 91 |  | ovex | ⊢ ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  ∈  V | 
						
							| 92 |  | ovex | ⊢ ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  ∈  V | 
						
							| 93 | 91 92 | opth | ⊢ ( 〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉  ↔  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) ) | 
						
							| 94 | 90 93 | sylib | ⊢ ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 )  →  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) ) | 
						
							| 95 |  | simprl | ⊢ ( ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉 )  ∧  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) )  →  ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) | 
						
							| 96 |  | simpll | ⊢ ( ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉 )  ∧  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) )  →  𝑑  =  〈 𝑏 ,  𝑐 〉 ) | 
						
							| 97 | 96 | fveq2d | ⊢ ( ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉 )  ∧  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) )  →  ( 1st  ‘ 𝑑 )  =  ( 1st  ‘ 〈 𝑏 ,  𝑐 〉 ) ) | 
						
							| 98 | 79 80 | op1st | ⊢ ( 1st  ‘ 〈 𝑏 ,  𝑐 〉 )  =  𝑏 | 
						
							| 99 | 97 98 | eqtrdi | ⊢ ( ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉 )  ∧  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) )  →  ( 1st  ‘ 𝑑 )  =  𝑏 ) | 
						
							| 100 | 99 | oveq1d | ⊢ ( ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉 )  ∧  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) )  →  ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( 𝑏  mod  ( abs ‘ 𝑎 ) ) ) | 
						
							| 101 |  | simplr | ⊢ ( ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉 )  ∧  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) )  →  𝑒  =  〈 𝑓 ,  𝑔 〉 ) | 
						
							| 102 | 101 | fveq2d | ⊢ ( ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉 )  ∧  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) )  →  ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 〈 𝑓 ,  𝑔 〉 ) ) | 
						
							| 103 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 104 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 105 | 103 104 | op1st | ⊢ ( 1st  ‘ 〈 𝑓 ,  𝑔 〉 )  =  𝑓 | 
						
							| 106 | 102 105 | eqtrdi | ⊢ ( ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉 )  ∧  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) )  →  ( 1st  ‘ 𝑒 )  =  𝑓 ) | 
						
							| 107 | 106 | oveq1d | ⊢ ( ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉 )  ∧  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) )  →  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  =  ( 𝑓  mod  ( abs ‘ 𝑎 ) ) ) | 
						
							| 108 | 95 100 107 | 3eqtr3d | ⊢ ( ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉 )  ∧  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) )  →  ( 𝑏  mod  ( abs ‘ 𝑎 ) )  =  ( 𝑓  mod  ( abs ‘ 𝑎 ) ) ) | 
						
							| 109 |  | simprr | ⊢ ( ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉 )  ∧  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) )  →  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) | 
						
							| 110 | 96 | fveq2d | ⊢ ( ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉 )  ∧  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) )  →  ( 2nd  ‘ 𝑑 )  =  ( 2nd  ‘ 〈 𝑏 ,  𝑐 〉 ) ) | 
						
							| 111 | 79 80 | op2nd | ⊢ ( 2nd  ‘ 〈 𝑏 ,  𝑐 〉 )  =  𝑐 | 
						
							| 112 | 110 111 | eqtrdi | ⊢ ( ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉 )  ∧  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) )  →  ( 2nd  ‘ 𝑑 )  =  𝑐 ) | 
						
							| 113 | 112 | oveq1d | ⊢ ( ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉 )  ∧  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) )  →  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( 𝑐  mod  ( abs ‘ 𝑎 ) ) ) | 
						
							| 114 | 101 | fveq2d | ⊢ ( ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉 )  ∧  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) )  →  ( 2nd  ‘ 𝑒 )  =  ( 2nd  ‘ 〈 𝑓 ,  𝑔 〉 ) ) | 
						
							| 115 | 103 104 | op2nd | ⊢ ( 2nd  ‘ 〈 𝑓 ,  𝑔 〉 )  =  𝑔 | 
						
							| 116 | 114 115 | eqtrdi | ⊢ ( ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉 )  ∧  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) )  →  ( 2nd  ‘ 𝑒 )  =  𝑔 ) | 
						
							| 117 | 116 | oveq1d | ⊢ ( ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉 )  ∧  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) )  →  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  =  ( 𝑔  mod  ( abs ‘ 𝑎 ) ) ) | 
						
							| 118 | 109 113 117 | 3eqtr3d | ⊢ ( ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉 )  ∧  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) )  →  ( 𝑐  mod  ( abs ‘ 𝑎 ) )  =  ( 𝑔  mod  ( abs ‘ 𝑎 ) ) ) | 
						
							| 119 | 108 118 | jca | ⊢ ( ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉 )  ∧  ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ) )  →  ( ( 𝑏  mod  ( abs ‘ 𝑎 ) )  =  ( 𝑓  mod  ( abs ‘ 𝑎 ) )  ∧  ( 𝑐  mod  ( abs ‘ 𝑎 ) )  =  ( 𝑔  mod  ( abs ‘ 𝑎 ) ) ) ) | 
						
							| 120 | 119 | ex | ⊢ ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉 )  →  ( ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) )  →  ( ( 𝑏  mod  ( abs ‘ 𝑎 ) )  =  ( 𝑓  mod  ( abs ‘ 𝑎 ) )  ∧  ( 𝑐  mod  ( abs ‘ 𝑎 ) )  =  ( 𝑔  mod  ( abs ‘ 𝑎 ) ) ) ) ) | 
						
							| 121 | 120 | 3adant3 | ⊢ ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 )  →  ( ( ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) )  ∧  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) )  =  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) )  →  ( ( 𝑏  mod  ( abs ‘ 𝑎 ) )  =  ( 𝑓  mod  ( abs ‘ 𝑎 ) )  ∧  ( 𝑐  mod  ( abs ‘ 𝑎 ) )  =  ( 𝑔  mod  ( abs ‘ 𝑎 ) ) ) ) ) | 
						
							| 122 | 94 121 | mpd | ⊢ ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 )  →  ( ( 𝑏  mod  ( abs ‘ 𝑎 ) )  =  ( 𝑓  mod  ( abs ‘ 𝑎 ) )  ∧  ( 𝑐  mod  ( abs ‘ 𝑎 ) )  =  ( 𝑔  mod  ( abs ‘ 𝑎 ) ) ) ) | 
						
							| 123 | 73 72 89 122 | syl3anc | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  ( ( 𝑏  mod  ( abs ‘ 𝑎 ) )  =  ( 𝑓  mod  ( abs ‘ 𝑎 ) )  ∧  ( 𝑐  mod  ( abs ‘ 𝑎 ) )  =  ( 𝑔  mod  ( abs ‘ 𝑎 ) ) ) ) | 
						
							| 124 | 123 | simpld | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  ( 𝑏  mod  ( abs ‘ 𝑎 ) )  =  ( 𝑓  mod  ( abs ‘ 𝑎 ) ) ) | 
						
							| 125 | 123 | simprd | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  ( 𝑐  mod  ( abs ‘ 𝑎 ) )  =  ( 𝑔  mod  ( abs ‘ 𝑎 ) ) ) | 
						
							| 126 | 58 61 63 65 67 69 71 84 85 87 88 124 125 | pellexlem6 | ⊢ ( ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  ∧  ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  ∧  ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ ( ( 𝑥 ↑ 2 )  −  ( 𝐷  ·  ( 𝑦 ↑ 2 ) ) )  =  1 ) | 
						
							| 127 | 126 | 3exp | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  →  ( ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  →  ( ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ ( ( 𝑥 ↑ 2 )  −  ( 𝐷  ·  ( 𝑦 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 128 | 127 | exlimdvv | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  →  ( ∃ 𝑓 ∃ 𝑔 ( 𝑒  =  〈 𝑓 ,  𝑔 〉  ∧  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) )  →  ( ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ ( ( 𝑥 ↑ 2 )  −  ( 𝐷  ·  ( 𝑦 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 129 | 55 128 | biimtrid | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) ) )  →  ( 𝑒  ∈  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) }  →  ( ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ ( ( 𝑥 ↑ 2 )  −  ( 𝐷  ·  ( 𝑦 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 130 | 129 | ex | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  →  ( ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) )  →  ( 𝑒  ∈  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) }  →  ( ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ ( ( 𝑥 ↑ 2 )  −  ( 𝐷  ·  ( 𝑦 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 131 | 130 | exlimdvv | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  →  ( ∃ 𝑏 ∃ 𝑐 ( 𝑑  =  〈 𝑏 ,  𝑐 〉  ∧  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) )  →  ( 𝑒  ∈  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) }  →  ( ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ ( ( 𝑥 ↑ 2 )  −  ( 𝐷  ·  ( 𝑦 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 132 | 54 131 | biimtrid | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  →  ( 𝑑  ∈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) }  →  ( 𝑒  ∈  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) }  →  ( ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ ( ( 𝑥 ↑ 2 )  −  ( 𝐷  ·  ( 𝑦 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 133 | 132 | impd | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  →  ( ( 𝑑  ∈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) }  ∧  𝑒  ∈  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ℕ  ∧  𝑔  ∈  ℕ )  ∧  ( ( 𝑓 ↑ 2 )  −  ( 𝐷  ·  ( 𝑔 ↑ 2 ) ) )  =  𝑎 ) } )  →  ( ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ ( ( 𝑥 ↑ 2 )  −  ( 𝐷  ·  ( 𝑦 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 134 | 53 133 | sylan2i | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  →  ( ( 𝑑  ∈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) }  ∧  𝑒  ∈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) } )  →  ( ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ ( ( 𝑥 ↑ 2 )  −  ( 𝐷  ·  ( 𝑦 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 135 | 134 | rexlimdvv | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  →  ( ∃ 𝑑  ∈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) } ∃ 𝑒  ∈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) } ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ ( ( 𝑥 ↑ 2 )  −  ( 𝐷  ·  ( 𝑦 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 136 | 135 | imp | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≠  0 )  ∧  ∃ 𝑑  ∈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) } ∃ 𝑒  ∈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) } ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ ( ( 𝑥 ↑ 2 )  −  ( 𝐷  ·  ( 𝑦 ↑ 2 ) ) )  =  1 ) | 
						
							| 137 | 136 | adantlrr | ⊢ ( ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  ( 𝑎  ≠  0  ∧  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) }  ≈  ℕ ) )  ∧  ∃ 𝑑  ∈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) } ∃ 𝑒  ∈  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) } ( 𝑑  ≠  𝑒  ∧  〈 ( ( 1st  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑑 )  mod  ( abs ‘ 𝑎 ) ) 〉  =  〈 ( ( 1st  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) ,  ( ( 2nd  ‘ 𝑒 )  mod  ( abs ‘ 𝑎 ) ) 〉 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ ( ( 𝑥 ↑ 2 )  −  ( 𝐷  ·  ( 𝑦 ↑ 2 ) ) )  =  1 ) | 
						
							| 138 | 41 137 | mpdan | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  𝑎  ∈  ℤ )  ∧  ( 𝑎  ≠  0  ∧  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) }  ≈  ℕ ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ ( ( 𝑥 ↑ 2 )  −  ( 𝐷  ·  ( 𝑦 ↑ 2 ) ) )  =  1 ) | 
						
							| 139 |  | pellexlem5 | ⊢ ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  →  ∃ 𝑎  ∈  ℤ ( 𝑎  ≠  0  ∧  { 〈 𝑏 ,  𝑐 〉  ∣  ( ( 𝑏  ∈  ℕ  ∧  𝑐  ∈  ℕ )  ∧  ( ( 𝑏 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  𝑎 ) }  ≈  ℕ ) ) | 
						
							| 140 | 138 139 | r19.29a | ⊢ ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ ( ( 𝑥 ↑ 2 )  −  ( 𝐷  ·  ( 𝑦 ↑ 2 ) ) )  =  1 ) |