| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fphpd.a | ⊢ ( 𝜑  →  𝐵  ≺  𝐴 ) | 
						
							| 2 |  | fphpd.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  𝐵 ) | 
						
							| 3 |  | fphpd.c | ⊢ ( 𝑥  =  𝑦  →  𝐶  =  𝐷 ) | 
						
							| 4 |  | domnsym | ⊢ ( 𝐴  ≼  𝐵  →  ¬  𝐵  ≺  𝐴 ) | 
						
							| 5 | 4 1 | nsyl3 | ⊢ ( 𝜑  →  ¬  𝐴  ≼  𝐵 ) | 
						
							| 6 |  | relsdom | ⊢ Rel   ≺ | 
						
							| 7 | 6 | brrelex1i | ⊢ ( 𝐵  ≺  𝐴  →  𝐵  ∈  V ) | 
						
							| 8 | 1 7 | syl | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) )  →  𝐵  ∈  V ) | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑎  ∈  𝐴 ) | 
						
							| 11 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑎  /  𝑥 ⦌ 𝐶 | 
						
							| 12 | 11 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑎  /  𝑥 ⦌ 𝐶  ∈  𝐵 | 
						
							| 13 | 10 12 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  𝑎  ∈  𝐴 )  →  ⦋ 𝑎  /  𝑥 ⦌ 𝐶  ∈  𝐵 ) | 
						
							| 14 |  | eleq1w | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥  ∈  𝐴  ↔  𝑎  ∈  𝐴 ) ) | 
						
							| 15 | 14 | anbi2d | ⊢ ( 𝑥  =  𝑎  →  ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝑎  ∈  𝐴 ) ) ) | 
						
							| 16 |  | csbeq1a | ⊢ ( 𝑥  =  𝑎  →  𝐶  =  ⦋ 𝑎  /  𝑥 ⦌ 𝐶 ) | 
						
							| 17 | 16 | eleq1d | ⊢ ( 𝑥  =  𝑎  →  ( 𝐶  ∈  𝐵  ↔  ⦋ 𝑎  /  𝑥 ⦌ 𝐶  ∈  𝐵 ) ) | 
						
							| 18 | 15 17 | imbi12d | ⊢ ( 𝑥  =  𝑎  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  𝐵 )  ↔  ( ( 𝜑  ∧  𝑎  ∈  𝐴 )  →  ⦋ 𝑎  /  𝑥 ⦌ 𝐶  ∈  𝐵 ) ) ) | 
						
							| 19 | 13 18 2 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐴 )  →  ⦋ 𝑎  /  𝑥 ⦌ 𝐶  ∈  𝐵 ) | 
						
							| 20 | 19 | ex | ⊢ ( 𝜑  →  ( 𝑎  ∈  𝐴  →  ⦋ 𝑎  /  𝑥 ⦌ 𝐶  ∈  𝐵 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) )  →  ( 𝑎  ∈  𝐴  →  ⦋ 𝑎  /  𝑥 ⦌ 𝐶  ∈  𝐵 ) ) | 
						
							| 22 |  | csbid | ⊢ ⦋ 𝑥  /  𝑥 ⦌ 𝐶  =  𝐶 | 
						
							| 23 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 24 | 23 3 | csbie | ⊢ ⦋ 𝑦  /  𝑥 ⦌ 𝐶  =  𝐷 | 
						
							| 25 | 22 24 | eqeq12i | ⊢ ( ⦋ 𝑥  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ↔  𝐶  =  𝐷 ) | 
						
							| 26 | 25 | imbi1i | ⊢ ( ( ⦋ 𝑥  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  →  𝑥  =  𝑦 )  ↔  ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) | 
						
							| 27 | 26 | 2ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ⦋ 𝑥  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) | 
						
							| 28 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐶 | 
						
							| 29 | 11 28 | nfeq | ⊢ Ⅎ 𝑥 ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 | 
						
							| 30 |  | nfv | ⊢ Ⅎ 𝑥 𝑎  =  𝑦 | 
						
							| 31 | 29 30 | nfim | ⊢ Ⅎ 𝑥 ( ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  →  𝑎  =  𝑦 ) | 
						
							| 32 |  | nfv | ⊢ Ⅎ 𝑦 ( ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑏  /  𝑥 ⦌ 𝐶  →  𝑎  =  𝑏 ) | 
						
							| 33 |  | csbeq1 | ⊢ ( 𝑥  =  𝑎  →  ⦋ 𝑥  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑎  /  𝑥 ⦌ 𝐶 ) | 
						
							| 34 | 33 | eqeq1d | ⊢ ( 𝑥  =  𝑎  →  ( ⦋ 𝑥  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ↔  ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 35 |  | equequ1 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥  =  𝑦  ↔  𝑎  =  𝑦 ) ) | 
						
							| 36 | 34 35 | imbi12d | ⊢ ( 𝑥  =  𝑎  →  ( ( ⦋ 𝑥  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  →  𝑥  =  𝑦 )  ↔  ( ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  →  𝑎  =  𝑦 ) ) ) | 
						
							| 37 |  | csbeq1 | ⊢ ( 𝑦  =  𝑏  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑏  /  𝑥 ⦌ 𝐶 ) | 
						
							| 38 | 37 | eqeq2d | ⊢ ( 𝑦  =  𝑏  →  ( ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  ↔  ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑏  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 39 |  | equequ2 | ⊢ ( 𝑦  =  𝑏  →  ( 𝑎  =  𝑦  ↔  𝑎  =  𝑏 ) ) | 
						
							| 40 | 38 39 | imbi12d | ⊢ ( 𝑦  =  𝑏  →  ( ( ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  →  𝑎  =  𝑦 )  ↔  ( ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑏  /  𝑥 ⦌ 𝐶  →  𝑎  =  𝑏 ) ) ) | 
						
							| 41 | 31 32 36 40 | rspc2 | ⊢ ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ⦋ 𝑥  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  →  𝑥  =  𝑦 )  →  ( ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑏  /  𝑥 ⦌ 𝐶  →  𝑎  =  𝑏 ) ) ) | 
						
							| 42 | 41 | com12 | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ⦋ 𝑥  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  →  𝑥  =  𝑦 )  →  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 )  →  ( ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑏  /  𝑥 ⦌ 𝐶  →  𝑎  =  𝑏 ) ) ) | 
						
							| 43 | 27 42 | sylbir | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 )  →  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 )  →  ( ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑏  /  𝑥 ⦌ 𝐶  →  𝑎  =  𝑏 ) ) ) | 
						
							| 44 |  | id | ⊢ ( ( ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑏  /  𝑥 ⦌ 𝐶  →  𝑎  =  𝑏 )  →  ( ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑏  /  𝑥 ⦌ 𝐶  →  𝑎  =  𝑏 ) ) | 
						
							| 45 |  | csbeq1 | ⊢ ( 𝑎  =  𝑏  →  ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑏  /  𝑥 ⦌ 𝐶 ) | 
						
							| 46 | 44 45 | impbid1 | ⊢ ( ( ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑏  /  𝑥 ⦌ 𝐶  →  𝑎  =  𝑏 )  →  ( ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑏  /  𝑥 ⦌ 𝐶  ↔  𝑎  =  𝑏 ) ) | 
						
							| 47 | 43 46 | syl6 | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 )  →  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 )  →  ( ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑏  /  𝑥 ⦌ 𝐶  ↔  𝑎  =  𝑏 ) ) ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) )  →  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 )  →  ( ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝑏  /  𝑥 ⦌ 𝐶  ↔  𝑎  =  𝑏 ) ) ) | 
						
							| 49 | 21 48 | dom2d | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) )  →  ( 𝐵  ∈  V  →  𝐴  ≼  𝐵 ) ) | 
						
							| 50 | 9 49 | mpd | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) )  →  𝐴  ≼  𝐵 ) | 
						
							| 51 | 5 50 | mtand | ⊢ ( 𝜑  →  ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) | 
						
							| 52 |  | ancom | ⊢ ( ( ¬  𝑥  =  𝑦  ∧  𝐶  =  𝐷 )  ↔  ( 𝐶  =  𝐷  ∧  ¬  𝑥  =  𝑦 ) ) | 
						
							| 53 |  | df-ne | ⊢ ( 𝑥  ≠  𝑦  ↔  ¬  𝑥  =  𝑦 ) | 
						
							| 54 | 53 | anbi1i | ⊢ ( ( 𝑥  ≠  𝑦  ∧  𝐶  =  𝐷 )  ↔  ( ¬  𝑥  =  𝑦  ∧  𝐶  =  𝐷 ) ) | 
						
							| 55 |  | pm4.61 | ⊢ ( ¬  ( 𝐶  =  𝐷  →  𝑥  =  𝑦 )  ↔  ( 𝐶  =  𝐷  ∧  ¬  𝑥  =  𝑦 ) ) | 
						
							| 56 | 52 54 55 | 3bitr4i | ⊢ ( ( 𝑥  ≠  𝑦  ∧  𝐶  =  𝐷 )  ↔  ¬  ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) | 
						
							| 57 | 56 | rexbii | ⊢ ( ∃ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  ∧  𝐶  =  𝐷 )  ↔  ∃ 𝑦  ∈  𝐴 ¬  ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) | 
						
							| 58 |  | rexnal | ⊢ ( ∃ 𝑦  ∈  𝐴 ¬  ( 𝐶  =  𝐷  →  𝑥  =  𝑦 )  ↔  ¬  ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) | 
						
							| 59 | 57 58 | bitri | ⊢ ( ∃ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  ∧  𝐶  =  𝐷 )  ↔  ¬  ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) | 
						
							| 60 | 59 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  ∧  𝐶  =  𝐷 )  ↔  ∃ 𝑥  ∈  𝐴 ¬  ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) | 
						
							| 61 |  | rexnal | ⊢ ( ∃ 𝑥  ∈  𝐴 ¬  ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 )  ↔  ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) | 
						
							| 62 | 60 61 | bitri | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  ∧  𝐶  =  𝐷 )  ↔  ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝐶  =  𝐷  →  𝑥  =  𝑦 ) ) | 
						
							| 63 | 51 62 | sylibr | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( 𝑥  ≠  𝑦  ∧  𝐶  =  𝐷 ) ) |