| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fphpd.a |  |-  ( ph -> B ~< A ) | 
						
							| 2 |  | fphpd.b |  |-  ( ( ph /\ x e. A ) -> C e. B ) | 
						
							| 3 |  | fphpd.c |  |-  ( x = y -> C = D ) | 
						
							| 4 |  | domnsym |  |-  ( A ~<_ B -> -. B ~< A ) | 
						
							| 5 | 4 1 | nsyl3 |  |-  ( ph -> -. A ~<_ B ) | 
						
							| 6 |  | relsdom |  |-  Rel ~< | 
						
							| 7 | 6 | brrelex1i |  |-  ( B ~< A -> B e. _V ) | 
						
							| 8 | 1 7 | syl |  |-  ( ph -> B e. _V ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ A. x e. A A. y e. A ( C = D -> x = y ) ) -> B e. _V ) | 
						
							| 10 |  | nfv |  |-  F/ x ( ph /\ a e. A ) | 
						
							| 11 |  | nfcsb1v |  |-  F/_ x [_ a / x ]_ C | 
						
							| 12 | 11 | nfel1 |  |-  F/ x [_ a / x ]_ C e. B | 
						
							| 13 | 10 12 | nfim |  |-  F/ x ( ( ph /\ a e. A ) -> [_ a / x ]_ C e. B ) | 
						
							| 14 |  | eleq1w |  |-  ( x = a -> ( x e. A <-> a e. A ) ) | 
						
							| 15 | 14 | anbi2d |  |-  ( x = a -> ( ( ph /\ x e. A ) <-> ( ph /\ a e. A ) ) ) | 
						
							| 16 |  | csbeq1a |  |-  ( x = a -> C = [_ a / x ]_ C ) | 
						
							| 17 | 16 | eleq1d |  |-  ( x = a -> ( C e. B <-> [_ a / x ]_ C e. B ) ) | 
						
							| 18 | 15 17 | imbi12d |  |-  ( x = a -> ( ( ( ph /\ x e. A ) -> C e. B ) <-> ( ( ph /\ a e. A ) -> [_ a / x ]_ C e. B ) ) ) | 
						
							| 19 | 13 18 2 | chvarfv |  |-  ( ( ph /\ a e. A ) -> [_ a / x ]_ C e. B ) | 
						
							| 20 | 19 | ex |  |-  ( ph -> ( a e. A -> [_ a / x ]_ C e. B ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ph /\ A. x e. A A. y e. A ( C = D -> x = y ) ) -> ( a e. A -> [_ a / x ]_ C e. B ) ) | 
						
							| 22 |  | csbid |  |-  [_ x / x ]_ C = C | 
						
							| 23 |  | vex |  |-  y e. _V | 
						
							| 24 | 23 3 | csbie |  |-  [_ y / x ]_ C = D | 
						
							| 25 | 22 24 | eqeq12i |  |-  ( [_ x / x ]_ C = [_ y / x ]_ C <-> C = D ) | 
						
							| 26 | 25 | imbi1i |  |-  ( ( [_ x / x ]_ C = [_ y / x ]_ C -> x = y ) <-> ( C = D -> x = y ) ) | 
						
							| 27 | 26 | 2ralbii |  |-  ( A. x e. A A. y e. A ( [_ x / x ]_ C = [_ y / x ]_ C -> x = y ) <-> A. x e. A A. y e. A ( C = D -> x = y ) ) | 
						
							| 28 |  | nfcsb1v |  |-  F/_ x [_ y / x ]_ C | 
						
							| 29 | 11 28 | nfeq |  |-  F/ x [_ a / x ]_ C = [_ y / x ]_ C | 
						
							| 30 |  | nfv |  |-  F/ x a = y | 
						
							| 31 | 29 30 | nfim |  |-  F/ x ( [_ a / x ]_ C = [_ y / x ]_ C -> a = y ) | 
						
							| 32 |  | nfv |  |-  F/ y ( [_ a / x ]_ C = [_ b / x ]_ C -> a = b ) | 
						
							| 33 |  | csbeq1 |  |-  ( x = a -> [_ x / x ]_ C = [_ a / x ]_ C ) | 
						
							| 34 | 33 | eqeq1d |  |-  ( x = a -> ( [_ x / x ]_ C = [_ y / x ]_ C <-> [_ a / x ]_ C = [_ y / x ]_ C ) ) | 
						
							| 35 |  | equequ1 |  |-  ( x = a -> ( x = y <-> a = y ) ) | 
						
							| 36 | 34 35 | imbi12d |  |-  ( x = a -> ( ( [_ x / x ]_ C = [_ y / x ]_ C -> x = y ) <-> ( [_ a / x ]_ C = [_ y / x ]_ C -> a = y ) ) ) | 
						
							| 37 |  | csbeq1 |  |-  ( y = b -> [_ y / x ]_ C = [_ b / x ]_ C ) | 
						
							| 38 | 37 | eqeq2d |  |-  ( y = b -> ( [_ a / x ]_ C = [_ y / x ]_ C <-> [_ a / x ]_ C = [_ b / x ]_ C ) ) | 
						
							| 39 |  | equequ2 |  |-  ( y = b -> ( a = y <-> a = b ) ) | 
						
							| 40 | 38 39 | imbi12d |  |-  ( y = b -> ( ( [_ a / x ]_ C = [_ y / x ]_ C -> a = y ) <-> ( [_ a / x ]_ C = [_ b / x ]_ C -> a = b ) ) ) | 
						
							| 41 | 31 32 36 40 | rspc2 |  |-  ( ( a e. A /\ b e. A ) -> ( A. x e. A A. y e. A ( [_ x / x ]_ C = [_ y / x ]_ C -> x = y ) -> ( [_ a / x ]_ C = [_ b / x ]_ C -> a = b ) ) ) | 
						
							| 42 | 41 | com12 |  |-  ( A. x e. A A. y e. A ( [_ x / x ]_ C = [_ y / x ]_ C -> x = y ) -> ( ( a e. A /\ b e. A ) -> ( [_ a / x ]_ C = [_ b / x ]_ C -> a = b ) ) ) | 
						
							| 43 | 27 42 | sylbir |  |-  ( A. x e. A A. y e. A ( C = D -> x = y ) -> ( ( a e. A /\ b e. A ) -> ( [_ a / x ]_ C = [_ b / x ]_ C -> a = b ) ) ) | 
						
							| 44 |  | id |  |-  ( ( [_ a / x ]_ C = [_ b / x ]_ C -> a = b ) -> ( [_ a / x ]_ C = [_ b / x ]_ C -> a = b ) ) | 
						
							| 45 |  | csbeq1 |  |-  ( a = b -> [_ a / x ]_ C = [_ b / x ]_ C ) | 
						
							| 46 | 44 45 | impbid1 |  |-  ( ( [_ a / x ]_ C = [_ b / x ]_ C -> a = b ) -> ( [_ a / x ]_ C = [_ b / x ]_ C <-> a = b ) ) | 
						
							| 47 | 43 46 | syl6 |  |-  ( A. x e. A A. y e. A ( C = D -> x = y ) -> ( ( a e. A /\ b e. A ) -> ( [_ a / x ]_ C = [_ b / x ]_ C <-> a = b ) ) ) | 
						
							| 48 | 47 | adantl |  |-  ( ( ph /\ A. x e. A A. y e. A ( C = D -> x = y ) ) -> ( ( a e. A /\ b e. A ) -> ( [_ a / x ]_ C = [_ b / x ]_ C <-> a = b ) ) ) | 
						
							| 49 | 21 48 | dom2d |  |-  ( ( ph /\ A. x e. A A. y e. A ( C = D -> x = y ) ) -> ( B e. _V -> A ~<_ B ) ) | 
						
							| 50 | 9 49 | mpd |  |-  ( ( ph /\ A. x e. A A. y e. A ( C = D -> x = y ) ) -> A ~<_ B ) | 
						
							| 51 | 5 50 | mtand |  |-  ( ph -> -. A. x e. A A. y e. A ( C = D -> x = y ) ) | 
						
							| 52 |  | ancom |  |-  ( ( -. x = y /\ C = D ) <-> ( C = D /\ -. x = y ) ) | 
						
							| 53 |  | df-ne |  |-  ( x =/= y <-> -. x = y ) | 
						
							| 54 | 53 | anbi1i |  |-  ( ( x =/= y /\ C = D ) <-> ( -. x = y /\ C = D ) ) | 
						
							| 55 |  | pm4.61 |  |-  ( -. ( C = D -> x = y ) <-> ( C = D /\ -. x = y ) ) | 
						
							| 56 | 52 54 55 | 3bitr4i |  |-  ( ( x =/= y /\ C = D ) <-> -. ( C = D -> x = y ) ) | 
						
							| 57 | 56 | rexbii |  |-  ( E. y e. A ( x =/= y /\ C = D ) <-> E. y e. A -. ( C = D -> x = y ) ) | 
						
							| 58 |  | rexnal |  |-  ( E. y e. A -. ( C = D -> x = y ) <-> -. A. y e. A ( C = D -> x = y ) ) | 
						
							| 59 | 57 58 | bitri |  |-  ( E. y e. A ( x =/= y /\ C = D ) <-> -. A. y e. A ( C = D -> x = y ) ) | 
						
							| 60 | 59 | rexbii |  |-  ( E. x e. A E. y e. A ( x =/= y /\ C = D ) <-> E. x e. A -. A. y e. A ( C = D -> x = y ) ) | 
						
							| 61 |  | rexnal |  |-  ( E. x e. A -. A. y e. A ( C = D -> x = y ) <-> -. A. x e. A A. y e. A ( C = D -> x = y ) ) | 
						
							| 62 | 60 61 | bitri |  |-  ( E. x e. A E. y e. A ( x =/= y /\ C = D ) <-> -. A. x e. A A. y e. A ( C = D -> x = y ) ) | 
						
							| 63 | 51 62 | sylibr |  |-  ( ph -> E. x e. A E. y e. A ( x =/= y /\ C = D ) ) |