| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fphpd.a |
|
| 2 |
|
fphpd.b |
|
| 3 |
|
fphpd.c |
|
| 4 |
|
domnsym |
|
| 5 |
4 1
|
nsyl3 |
|
| 6 |
|
relsdom |
|
| 7 |
6
|
brrelex1i |
|
| 8 |
1 7
|
syl |
|
| 9 |
8
|
adantr |
|
| 10 |
|
nfv |
|
| 11 |
|
nfcsb1v |
|
| 12 |
11
|
nfel1 |
|
| 13 |
10 12
|
nfim |
|
| 14 |
|
eleq1w |
|
| 15 |
14
|
anbi2d |
|
| 16 |
|
csbeq1a |
|
| 17 |
16
|
eleq1d |
|
| 18 |
15 17
|
imbi12d |
|
| 19 |
13 18 2
|
chvarfv |
|
| 20 |
19
|
ex |
|
| 21 |
20
|
adantr |
|
| 22 |
|
csbid |
|
| 23 |
|
vex |
|
| 24 |
23 3
|
csbie |
|
| 25 |
22 24
|
eqeq12i |
|
| 26 |
25
|
imbi1i |
|
| 27 |
26
|
2ralbii |
|
| 28 |
|
nfcsb1v |
|
| 29 |
11 28
|
nfeq |
|
| 30 |
|
nfv |
|
| 31 |
29 30
|
nfim |
|
| 32 |
|
nfv |
|
| 33 |
|
csbeq1 |
|
| 34 |
33
|
eqeq1d |
|
| 35 |
|
equequ1 |
|
| 36 |
34 35
|
imbi12d |
|
| 37 |
|
csbeq1 |
|
| 38 |
37
|
eqeq2d |
|
| 39 |
|
equequ2 |
|
| 40 |
38 39
|
imbi12d |
|
| 41 |
31 32 36 40
|
rspc2 |
|
| 42 |
41
|
com12 |
|
| 43 |
27 42
|
sylbir |
|
| 44 |
|
id |
|
| 45 |
|
csbeq1 |
|
| 46 |
44 45
|
impbid1 |
|
| 47 |
43 46
|
syl6 |
|
| 48 |
47
|
adantl |
|
| 49 |
21 48
|
dom2d |
|
| 50 |
9 49
|
mpd |
|
| 51 |
5 50
|
mtand |
|
| 52 |
|
ancom |
|
| 53 |
|
df-ne |
|
| 54 |
53
|
anbi1i |
|
| 55 |
|
pm4.61 |
|
| 56 |
52 54 55
|
3bitr4i |
|
| 57 |
56
|
rexbii |
|
| 58 |
|
rexnal |
|
| 59 |
57 58
|
bitri |
|
| 60 |
59
|
rexbii |
|
| 61 |
|
rexnal |
|
| 62 |
60 61
|
bitri |
|
| 63 |
51 62
|
sylibr |
|