| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fphpdo.1 |
|
| 2 |
|
fphpdo.2 |
|
| 3 |
|
fphpdo.3 |
|
| 4 |
|
fphpdo.4 |
|
| 5 |
|
fphpdo.5 |
|
| 6 |
|
fphpdo.6 |
|
| 7 |
4
|
fmpttd |
|
| 8 |
7
|
ffvelcdmda |
|
| 9 |
|
fveq2 |
|
| 10 |
3 8 9
|
fphpd |
|
| 11 |
1
|
sselda |
|
| 12 |
11
|
adantrr |
|
| 13 |
12
|
adantr |
|
| 14 |
1
|
sselda |
|
| 15 |
14
|
adantrl |
|
| 16 |
15
|
adantr |
|
| 17 |
13 16
|
lttri2d |
|
| 18 |
|
simprl |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
|
simprr |
|
| 21 |
20
|
ad2antrr |
|
| 22 |
|
simpr |
|
| 23 |
|
simplr |
|
| 24 |
|
breq1 |
|
| 25 |
|
fveqeq2 |
|
| 26 |
24 25
|
anbi12d |
|
| 27 |
|
breq2 |
|
| 28 |
|
fveq2 |
|
| 29 |
28
|
eqeq2d |
|
| 30 |
27 29
|
anbi12d |
|
| 31 |
26 30
|
rspc2ev |
|
| 32 |
19 21 22 23 31
|
syl112anc |
|
| 33 |
32
|
ex |
|
| 34 |
20
|
ad2antrr |
|
| 35 |
18
|
ad2antrr |
|
| 36 |
|
simpr |
|
| 37 |
|
simplr |
|
| 38 |
37
|
eqcomd |
|
| 39 |
|
breq1 |
|
| 40 |
|
fveqeq2 |
|
| 41 |
39 40
|
anbi12d |
|
| 42 |
|
breq2 |
|
| 43 |
|
fveq2 |
|
| 44 |
43
|
eqeq2d |
|
| 45 |
42 44
|
anbi12d |
|
| 46 |
41 45
|
rspc2ev |
|
| 47 |
34 35 36 38 46
|
syl112anc |
|
| 48 |
47
|
ex |
|
| 49 |
33 48
|
jaod |
|
| 50 |
|
eqid |
|
| 51 |
|
simplr |
|
| 52 |
|
eleq1w |
|
| 53 |
52
|
anbi2d |
|
| 54 |
5
|
eleq1d |
|
| 55 |
53 54
|
imbi12d |
|
| 56 |
55 4
|
chvarvv |
|
| 57 |
56
|
adantr |
|
| 58 |
50 5 51 57
|
fvmptd3 |
|
| 59 |
|
simpr |
|
| 60 |
|
eleq1w |
|
| 61 |
60
|
anbi2d |
|
| 62 |
6
|
eleq1d |
|
| 63 |
61 62
|
imbi12d |
|
| 64 |
63 4
|
chvarvv |
|
| 65 |
64
|
adantlr |
|
| 66 |
50 6 59 65
|
fvmptd3 |
|
| 67 |
58 66
|
eqeq12d |
|
| 68 |
67
|
biimpd |
|
| 69 |
68
|
anim2d |
|
| 70 |
69
|
reximdva |
|
| 71 |
70
|
reximdva |
|
| 72 |
71
|
ad2antrr |
|
| 73 |
49 72
|
syld |
|
| 74 |
17 73
|
sylbid |
|
| 75 |
74
|
expimpd |
|
| 76 |
75
|
ancomsd |
|
| 77 |
76
|
rexlimdvva |
|
| 78 |
10 77
|
mpd |
|