Metamath Proof Explorer


Theorem fphpdo

Description: Pigeonhole principle for sets of real numbers with implicit output reordering. (Contributed by Stefan O'Rear, 12-Sep-2014)

Ref Expression
Hypotheses fphpdo.1 φA
fphpdo.2 φBV
fphpdo.3 φBA
fphpdo.4 φzACB
fphpdo.5 z=xC=D
fphpdo.6 z=yC=E
Assertion fphpdo φxAyAx<yD=E

Proof

Step Hyp Ref Expression
1 fphpdo.1 φA
2 fphpdo.2 φBV
3 fphpdo.3 φBA
4 fphpdo.4 φzACB
5 fphpdo.5 z=xC=D
6 fphpdo.6 z=yC=E
7 4 fmpttd φzAC:AB
8 7 ffvelcdmda φbAzACbB
9 fveq2 b=czACb=zACc
10 3 8 9 fphpd φbAcAbczACb=zACc
11 1 sselda φbAb
12 11 adantrr φbAcAb
13 12 adantr φbAcAzACb=zACcb
14 1 sselda φcAc
15 14 adantrl φbAcAc
16 15 adantr φbAcAzACb=zACcc
17 13 16 lttri2d φbAcAzACb=zACcbcb<cc<b
18 simprl φbAcAbA
19 18 ad2antrr φbAcAzACb=zACcb<cbA
20 simprr φbAcAcA
21 20 ad2antrr φbAcAzACb=zACcb<ccA
22 simpr φbAcAzACb=zACcb<cb<c
23 simplr φbAcAzACb=zACcb<czACb=zACc
24 breq1 x=bx<yb<y
25 fveqeq2 x=bzACx=zACyzACb=zACy
26 24 25 anbi12d x=bx<yzACx=zACyb<yzACb=zACy
27 breq2 y=cb<yb<c
28 fveq2 y=czACy=zACc
29 28 eqeq2d y=czACb=zACyzACb=zACc
30 27 29 anbi12d y=cb<yzACb=zACyb<czACb=zACc
31 26 30 rspc2ev bAcAb<czACb=zACcxAyAx<yzACx=zACy
32 19 21 22 23 31 syl112anc φbAcAzACb=zACcb<cxAyAx<yzACx=zACy
33 32 ex φbAcAzACb=zACcb<cxAyAx<yzACx=zACy
34 20 ad2antrr φbAcAzACb=zACcc<bcA
35 18 ad2antrr φbAcAzACb=zACcc<bbA
36 simpr φbAcAzACb=zACcc<bc<b
37 simplr φbAcAzACb=zACcc<bzACb=zACc
38 37 eqcomd φbAcAzACb=zACcc<bzACc=zACb
39 breq1 x=cx<yc<y
40 fveqeq2 x=czACx=zACyzACc=zACy
41 39 40 anbi12d x=cx<yzACx=zACyc<yzACc=zACy
42 breq2 y=bc<yc<b
43 fveq2 y=bzACy=zACb
44 43 eqeq2d y=bzACc=zACyzACc=zACb
45 42 44 anbi12d y=bc<yzACc=zACyc<bzACc=zACb
46 41 45 rspc2ev cAbAc<bzACc=zACbxAyAx<yzACx=zACy
47 34 35 36 38 46 syl112anc φbAcAzACb=zACcc<bxAyAx<yzACx=zACy
48 47 ex φbAcAzACb=zACcc<bxAyAx<yzACx=zACy
49 33 48 jaod φbAcAzACb=zACcb<cc<bxAyAx<yzACx=zACy
50 eqid zAC=zAC
51 simplr φxAyAxA
52 eleq1w z=xzAxA
53 52 anbi2d z=xφzAφxA
54 5 eleq1d z=xCBDB
55 53 54 imbi12d z=xφzACBφxADB
56 55 4 chvarvv φxADB
57 56 adantr φxAyADB
58 50 5 51 57 fvmptd3 φxAyAzACx=D
59 simpr φxAyAyA
60 eleq1w z=yzAyA
61 60 anbi2d z=yφzAφyA
62 6 eleq1d z=yCBEB
63 61 62 imbi12d z=yφzACBφyAEB
64 63 4 chvarvv φyAEB
65 64 adantlr φxAyAEB
66 50 6 59 65 fvmptd3 φxAyAzACy=E
67 58 66 eqeq12d φxAyAzACx=zACyD=E
68 67 biimpd φxAyAzACx=zACyD=E
69 68 anim2d φxAyAx<yzACx=zACyx<yD=E
70 69 reximdva φxAyAx<yzACx=zACyyAx<yD=E
71 70 reximdva φxAyAx<yzACx=zACyxAyAx<yD=E
72 71 ad2antrr φbAcAzACb=zACcxAyAx<yzACx=zACyxAyAx<yD=E
73 49 72 syld φbAcAzACb=zACcb<cc<bxAyAx<yD=E
74 17 73 sylbid φbAcAzACb=zACcbcxAyAx<yD=E
75 74 expimpd φbAcAzACb=zACcbcxAyAx<yD=E
76 75 ancomsd φbAcAbczACb=zACcxAyAx<yD=E
77 76 rexlimdvva φbAcAbczACb=zACcxAyAx<yD=E
78 10 77 mpd φxAyAx<yD=E