| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pellex.ann | ⊢ ( 𝜑  →  𝐴  ∈  ℕ ) | 
						
							| 2 |  | pellex.bnn | ⊢ ( 𝜑  →  𝐵  ∈  ℕ ) | 
						
							| 3 |  | pellex.cz | ⊢ ( 𝜑  →  𝐶  ∈  ℤ ) | 
						
							| 4 |  | pellex.dnn | ⊢ ( 𝜑  →  𝐷  ∈  ℕ ) | 
						
							| 5 |  | pellex.irr | ⊢ ( 𝜑  →  ¬  ( √ ‘ 𝐷 )  ∈  ℚ ) | 
						
							| 6 |  | pellex.enn | ⊢ ( 𝜑  →  𝐸  ∈  ℕ ) | 
						
							| 7 |  | pellex.fnn | ⊢ ( 𝜑  →  𝐹  ∈  ℕ ) | 
						
							| 8 |  | pellex.neq | ⊢ ( 𝜑  →  ¬  ( 𝐴  =  𝐸  ∧  𝐵  =  𝐹 ) ) | 
						
							| 9 |  | pellex.cn0 | ⊢ ( 𝜑  →  𝐶  ≠  0 ) | 
						
							| 10 |  | pellex.no1 | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  𝐶 ) | 
						
							| 11 |  | pellex.no2 | ⊢ ( 𝜑  →  ( ( 𝐸 ↑ 2 )  −  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  =  𝐶 ) | 
						
							| 12 |  | pellex.xcg | ⊢ ( 𝜑  →  ( 𝐴  mod  ( abs ‘ 𝐶 ) )  =  ( 𝐸  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 13 |  | pellex.ycg | ⊢ ( 𝜑  →  ( 𝐵  mod  ( abs ‘ 𝐶 ) )  =  ( 𝐹  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 14 | 1 | nncnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 15 | 6 | nncnd | ⊢ ( 𝜑  →  𝐸  ∈  ℂ ) | 
						
							| 16 | 14 15 | mulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐸 )  ∈  ℂ ) | 
						
							| 17 | 4 | nncnd | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 18 | 2 | nncnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 19 | 7 | nncnd | ⊢ ( 𝜑  →  𝐹  ∈  ℂ ) | 
						
							| 20 | 18 19 | mulcld | ⊢ ( 𝜑  →  ( 𝐵  ·  𝐹 )  ∈  ℂ ) | 
						
							| 21 | 17 20 | mulcld | ⊢ ( 𝜑  →  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ∈  ℂ ) | 
						
							| 22 | 16 21 | subcld | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  ∈  ℂ ) | 
						
							| 23 | 3 | zcnd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 24 | 22 23 9 | absdivd | ⊢ ( 𝜑  →  ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) )  =  ( ( abs ‘ ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  /  ( abs ‘ 𝐶 ) ) ) | 
						
							| 25 | 16 21 | negsubd | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐸 )  +  - ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  =  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) ) | 
						
							| 26 | 25 | eqcomd | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  =  ( ( 𝐴  ·  𝐸 )  +  - ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) ) | 
						
							| 27 | 26 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  mod  ( abs ‘ 𝐶 ) )  =  ( ( ( 𝐴  ·  𝐸 )  +  - ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 28 | 1 | nnred | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 29 | 6 | nnred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 30 | 28 29 | remulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐸 )  ∈  ℝ ) | 
						
							| 31 | 4 | nnred | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 32 | 2 | nnred | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 33 | 7 | nnred | ⊢ ( 𝜑  →  𝐹  ∈  ℝ ) | 
						
							| 34 | 32 33 | remulcld | ⊢ ( 𝜑  →  ( 𝐵  ·  𝐹 )  ∈  ℝ ) | 
						
							| 35 | 31 34 | remulcld | ⊢ ( 𝜑  →  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ∈  ℝ ) | 
						
							| 36 | 35 | renegcld | ⊢ ( 𝜑  →  - ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ∈  ℝ ) | 
						
							| 37 | 23 9 | absrpcld | ⊢ ( 𝜑  →  ( abs ‘ 𝐶 )  ∈  ℝ+ ) | 
						
							| 38 | 6 | nnzd | ⊢ ( 𝜑  →  𝐸  ∈  ℤ ) | 
						
							| 39 |  | modmul1 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐸  ∈  ℝ )  ∧  ( 𝐸  ∈  ℤ  ∧  ( abs ‘ 𝐶 )  ∈  ℝ+ )  ∧  ( 𝐴  mod  ( abs ‘ 𝐶 ) )  =  ( 𝐸  mod  ( abs ‘ 𝐶 ) ) )  →  ( ( 𝐴  ·  𝐸 )  mod  ( abs ‘ 𝐶 ) )  =  ( ( 𝐸  ·  𝐸 )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 40 | 28 29 38 37 12 39 | syl221anc | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐸 )  mod  ( abs ‘ 𝐶 ) )  =  ( ( 𝐸  ·  𝐸 )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 41 | 15 | sqcld | ⊢ ( 𝜑  →  ( 𝐸 ↑ 2 )  ∈  ℂ ) | 
						
							| 42 | 19 | sqcld | ⊢ ( 𝜑  →  ( 𝐹 ↑ 2 )  ∈  ℂ ) | 
						
							| 43 | 17 42 | mulcld | ⊢ ( 𝜑  →  ( 𝐷  ·  ( 𝐹 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 44 | 41 43 | npcand | ⊢ ( 𝜑  →  ( ( ( 𝐸 ↑ 2 )  −  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  +  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  =  ( 𝐸 ↑ 2 ) ) | 
						
							| 45 | 15 | sqvald | ⊢ ( 𝜑  →  ( 𝐸 ↑ 2 )  =  ( 𝐸  ·  𝐸 ) ) | 
						
							| 46 | 44 45 | eqtr2d | ⊢ ( 𝜑  →  ( 𝐸  ·  𝐸 )  =  ( ( ( 𝐸 ↑ 2 )  −  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  +  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 47 | 46 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐸  ·  𝐸 )  mod  ( abs ‘ 𝐶 ) )  =  ( ( ( ( 𝐸 ↑ 2 )  −  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  +  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 48 | 29 | resqcld | ⊢ ( 𝜑  →  ( 𝐸 ↑ 2 )  ∈  ℝ ) | 
						
							| 49 | 33 | resqcld | ⊢ ( 𝜑  →  ( 𝐹 ↑ 2 )  ∈  ℝ ) | 
						
							| 50 | 31 49 | remulcld | ⊢ ( 𝜑  →  ( 𝐷  ·  ( 𝐹 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 51 | 48 50 | resubcld | ⊢ ( 𝜑  →  ( ( 𝐸 ↑ 2 )  −  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  ∈  ℝ ) | 
						
							| 52 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 53 | 23 | abscld | ⊢ ( 𝜑  →  ( abs ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 54 | 53 | recnd | ⊢ ( 𝜑  →  ( abs ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 55 | 23 9 | absne0d | ⊢ ( 𝜑  →  ( abs ‘ 𝐶 )  ≠  0 ) | 
						
							| 56 | 54 55 | dividd | ⊢ ( 𝜑  →  ( ( abs ‘ 𝐶 )  /  ( abs ‘ 𝐶 ) )  =  1 ) | 
						
							| 57 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 58 | 56 57 | eqeltrd | ⊢ ( 𝜑  →  ( ( abs ‘ 𝐶 )  /  ( abs ‘ 𝐶 ) )  ∈  ℤ ) | 
						
							| 59 |  | mod0 | ⊢ ( ( ( abs ‘ 𝐶 )  ∈  ℝ  ∧  ( abs ‘ 𝐶 )  ∈  ℝ+ )  →  ( ( ( abs ‘ 𝐶 )  mod  ( abs ‘ 𝐶 ) )  =  0  ↔  ( ( abs ‘ 𝐶 )  /  ( abs ‘ 𝐶 ) )  ∈  ℤ ) ) | 
						
							| 60 | 53 37 59 | syl2anc | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝐶 )  mod  ( abs ‘ 𝐶 ) )  =  0  ↔  ( ( abs ‘ 𝐶 )  /  ( abs ‘ 𝐶 ) )  ∈  ℤ ) ) | 
						
							| 61 | 58 60 | mpbird | ⊢ ( 𝜑  →  ( ( abs ‘ 𝐶 )  mod  ( abs ‘ 𝐶 ) )  =  0 ) | 
						
							| 62 | 3 | zred | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 63 |  | absmod0 | ⊢ ( ( 𝐶  ∈  ℝ  ∧  ( abs ‘ 𝐶 )  ∈  ℝ+ )  →  ( ( 𝐶  mod  ( abs ‘ 𝐶 ) )  =  0  ↔  ( ( abs ‘ 𝐶 )  mod  ( abs ‘ 𝐶 ) )  =  0 ) ) | 
						
							| 64 | 62 37 63 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐶  mod  ( abs ‘ 𝐶 ) )  =  0  ↔  ( ( abs ‘ 𝐶 )  mod  ( abs ‘ 𝐶 ) )  =  0 ) ) | 
						
							| 65 | 61 64 | mpbird | ⊢ ( 𝜑  →  ( 𝐶  mod  ( abs ‘ 𝐶 ) )  =  0 ) | 
						
							| 66 | 11 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐸 ↑ 2 )  −  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  mod  ( abs ‘ 𝐶 ) )  =  ( 𝐶  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 67 |  | 0mod | ⊢ ( ( abs ‘ 𝐶 )  ∈  ℝ+  →  ( 0  mod  ( abs ‘ 𝐶 ) )  =  0 ) | 
						
							| 68 | 37 67 | syl | ⊢ ( 𝜑  →  ( 0  mod  ( abs ‘ 𝐶 ) )  =  0 ) | 
						
							| 69 | 65 66 68 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( ( 𝐸 ↑ 2 )  −  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  mod  ( abs ‘ 𝐶 ) )  =  ( 0  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 70 |  | modadd1 | ⊢ ( ( ( ( ( 𝐸 ↑ 2 )  −  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  ∈  ℝ  ∧  0  ∈  ℝ )  ∧  ( ( 𝐷  ·  ( 𝐹 ↑ 2 ) )  ∈  ℝ  ∧  ( abs ‘ 𝐶 )  ∈  ℝ+ )  ∧  ( ( ( 𝐸 ↑ 2 )  −  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  mod  ( abs ‘ 𝐶 ) )  =  ( 0  mod  ( abs ‘ 𝐶 ) ) )  →  ( ( ( ( 𝐸 ↑ 2 )  −  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  +  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  mod  ( abs ‘ 𝐶 ) )  =  ( ( 0  +  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 71 | 51 52 50 37 69 70 | syl221anc | ⊢ ( 𝜑  →  ( ( ( ( 𝐸 ↑ 2 )  −  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  +  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  mod  ( abs ‘ 𝐶 ) )  =  ( ( 0  +  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 72 | 43 | addlidd | ⊢ ( 𝜑  →  ( 0  +  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  =  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) | 
						
							| 73 | 19 | sqvald | ⊢ ( 𝜑  →  ( 𝐹 ↑ 2 )  =  ( 𝐹  ·  𝐹 ) ) | 
						
							| 74 | 73 | oveq2d | ⊢ ( 𝜑  →  ( 𝐷  ·  ( 𝐹 ↑ 2 ) )  =  ( 𝐷  ·  ( 𝐹  ·  𝐹 ) ) ) | 
						
							| 75 | 17 19 19 | mul12d | ⊢ ( 𝜑  →  ( 𝐷  ·  ( 𝐹  ·  𝐹 ) )  =  ( 𝐹  ·  ( 𝐷  ·  𝐹 ) ) ) | 
						
							| 76 | 72 74 75 | 3eqtrd | ⊢ ( 𝜑  →  ( 0  +  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  =  ( 𝐹  ·  ( 𝐷  ·  𝐹 ) ) ) | 
						
							| 77 | 76 | oveq1d | ⊢ ( 𝜑  →  ( ( 0  +  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  mod  ( abs ‘ 𝐶 ) )  =  ( ( 𝐹  ·  ( 𝐷  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 78 | 47 71 77 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝐸  ·  𝐸 )  mod  ( abs ‘ 𝐶 ) )  =  ( ( 𝐹  ·  ( 𝐷  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 79 | 4 | nnzd | ⊢ ( 𝜑  →  𝐷  ∈  ℤ ) | 
						
							| 80 | 7 | nnzd | ⊢ ( 𝜑  →  𝐹  ∈  ℤ ) | 
						
							| 81 | 79 80 | zmulcld | ⊢ ( 𝜑  →  ( 𝐷  ·  𝐹 )  ∈  ℤ ) | 
						
							| 82 | 13 | eqcomd | ⊢ ( 𝜑  →  ( 𝐹  mod  ( abs ‘ 𝐶 ) )  =  ( 𝐵  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 83 |  | modmul1 | ⊢ ( ( ( 𝐹  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( ( 𝐷  ·  𝐹 )  ∈  ℤ  ∧  ( abs ‘ 𝐶 )  ∈  ℝ+ )  ∧  ( 𝐹  mod  ( abs ‘ 𝐶 ) )  =  ( 𝐵  mod  ( abs ‘ 𝐶 ) ) )  →  ( ( 𝐹  ·  ( 𝐷  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) )  =  ( ( 𝐵  ·  ( 𝐷  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 84 | 33 32 81 37 82 83 | syl221anc | ⊢ ( 𝜑  →  ( ( 𝐹  ·  ( 𝐷  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) )  =  ( ( 𝐵  ·  ( 𝐷  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 85 | 18 17 19 | mul12d | ⊢ ( 𝜑  →  ( 𝐵  ·  ( 𝐷  ·  𝐹 ) )  =  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) | 
						
							| 86 | 85 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐵  ·  ( 𝐷  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) )  =  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 87 | 84 86 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐹  ·  ( 𝐷  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) )  =  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 88 | 40 78 87 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐸 )  mod  ( abs ‘ 𝐶 ) )  =  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 89 |  | modadd1 | ⊢ ( ( ( ( 𝐴  ·  𝐸 )  ∈  ℝ  ∧  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ∈  ℝ )  ∧  ( - ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ∈  ℝ  ∧  ( abs ‘ 𝐶 )  ∈  ℝ+ )  ∧  ( ( 𝐴  ·  𝐸 )  mod  ( abs ‘ 𝐶 ) )  =  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) ) )  →  ( ( ( 𝐴  ·  𝐸 )  +  - ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  mod  ( abs ‘ 𝐶 ) )  =  ( ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  +  - ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 90 | 30 35 36 37 88 89 | syl221anc | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  𝐸 )  +  - ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  mod  ( abs ‘ 𝐶 ) )  =  ( ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  +  - ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 91 | 21 | negidd | ⊢ ( 𝜑  →  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  +  - ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  =  0 ) | 
						
							| 92 | 91 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  +  - ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  mod  ( abs ‘ 𝐶 ) )  =  ( 0  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 93 | 27 90 92 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  mod  ( abs ‘ 𝐶 ) )  =  ( 0  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 94 | 93 68 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  mod  ( abs ‘ 𝐶 ) )  =  0 ) | 
						
							| 95 | 30 35 | resubcld | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  ∈  ℝ ) | 
						
							| 96 |  | absmod0 | ⊢ ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  ∈  ℝ  ∧  ( abs ‘ 𝐶 )  ∈  ℝ+ )  →  ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  mod  ( abs ‘ 𝐶 ) )  =  0  ↔  ( ( abs ‘ ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  mod  ( abs ‘ 𝐶 ) )  =  0 ) ) | 
						
							| 97 | 95 37 96 | syl2anc | ⊢ ( 𝜑  →  ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  mod  ( abs ‘ 𝐶 ) )  =  0  ↔  ( ( abs ‘ ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  mod  ( abs ‘ 𝐶 ) )  =  0 ) ) | 
						
							| 98 | 94 97 | mpbid | ⊢ ( 𝜑  →  ( ( abs ‘ ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  mod  ( abs ‘ 𝐶 ) )  =  0 ) | 
						
							| 99 | 22 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  ∈  ℝ ) | 
						
							| 100 |  | mod0 | ⊢ ( ( ( abs ‘ ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  ∈  ℝ  ∧  ( abs ‘ 𝐶 )  ∈  ℝ+ )  →  ( ( ( abs ‘ ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  mod  ( abs ‘ 𝐶 ) )  =  0  ↔  ( ( abs ‘ ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  /  ( abs ‘ 𝐶 ) )  ∈  ℤ ) ) | 
						
							| 101 | 99 37 100 | syl2anc | ⊢ ( 𝜑  →  ( ( ( abs ‘ ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  mod  ( abs ‘ 𝐶 ) )  =  0  ↔  ( ( abs ‘ ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  /  ( abs ‘ 𝐶 ) )  ∈  ℤ ) ) | 
						
							| 102 | 98 101 | mpbid | ⊢ ( 𝜑  →  ( ( abs ‘ ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  /  ( abs ‘ 𝐶 ) )  ∈  ℤ ) | 
						
							| 103 | 24 102 | eqeltrd | ⊢ ( 𝜑  →  ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) )  ∈  ℤ ) | 
						
							| 104 | 95 62 9 | redivcld | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 )  ∈  ℝ ) | 
						
							| 105 |  | absz | ⊢ ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 )  ∈  ℝ  →  ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 )  ∈  ℤ  ↔  ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) )  ∈  ℤ ) ) | 
						
							| 106 | 104 105 | syl | ⊢ ( 𝜑  →  ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 )  ∈  ℤ  ↔  ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) )  ∈  ℤ ) ) | 
						
							| 107 | 103 106 | mpbird | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 )  ∈  ℤ ) | 
						
							| 108 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 109 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 110 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 111 | 109 110 | ltnlei | ⊢ ( 0  <  1  ↔  ¬  1  ≤  0 ) | 
						
							| 112 | 108 111 | mpbi | ⊢ ¬  1  ≤  0 | 
						
							| 113 | 18 15 | mulcld | ⊢ ( 𝜑  →  ( 𝐵  ·  𝐸 )  ∈  ℂ ) | 
						
							| 114 | 14 19 | mulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐹 )  ∈  ℂ ) | 
						
							| 115 | 113 114 | subcld | ⊢ ( 𝜑  →  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  ∈  ℂ ) | 
						
							| 116 | 115 23 9 | divcld | ⊢ ( 𝜑  →  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 )  ∈  ℂ ) | 
						
							| 117 | 116 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) )  ∈  ℝ ) | 
						
							| 118 | 117 | resqcld | ⊢ ( 𝜑  →  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 119 | 4 | nnnn0d | ⊢ ( 𝜑  →  𝐷  ∈  ℕ0 ) | 
						
							| 120 | 119 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  𝐷 ) | 
						
							| 121 | 117 | sqge0d | ⊢ ( 𝜑  →  0  ≤  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) ) | 
						
							| 122 | 31 118 120 121 | mulge0d | ⊢ ( 𝜑  →  0  ≤  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) ) ) | 
						
							| 123 | 31 118 | remulcld | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) )  ∈  ℝ ) | 
						
							| 124 | 52 123 | suble0d | ⊢ ( 𝜑  →  ( ( 0  −  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) ) )  ≤  0  ↔  0  ≤  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) ) ) ) | 
						
							| 125 | 122 124 | mpbird | ⊢ ( 𝜑  →  ( 0  −  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) ) )  ≤  0 ) | 
						
							| 126 |  | breq1 | ⊢ ( 1  =  ( 0  −  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) ) )  →  ( 1  ≤  0  ↔  ( 0  −  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) ) )  ≤  0 ) ) | 
						
							| 127 | 125 126 | syl5ibrcom | ⊢ ( 𝜑  →  ( 1  =  ( 0  −  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) ) )  →  1  ≤  0 ) ) | 
						
							| 128 | 112 127 | mtoi | ⊢ ( 𝜑  →  ¬  1  =  ( 0  −  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) ) ) ) | 
						
							| 129 |  | absresq | ⊢ ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 )  ∈  ℝ  →  ( ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) ) ↑ 2 )  =  ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) ↑ 2 ) ) | 
						
							| 130 | 104 129 | syl | ⊢ ( 𝜑  →  ( ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) ) ↑ 2 )  =  ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) ↑ 2 ) ) | 
						
							| 131 | 22 23 9 | sqdivd | ⊢ ( 𝜑  →  ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) ↑ 2 )  =  ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) ↑ 2 )  /  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 132 | 22 | sqvald | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) ↑ 2 )  =  ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  ·  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) ) ) | 
						
							| 133 | 132 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) ↑ 2 )  /  ( 𝐶 ↑ 2 ) )  =  ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  ·  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  /  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 134 | 130 131 133 | 3eqtrd | ⊢ ( 𝜑  →  ( ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) ) ↑ 2 )  =  ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  ·  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  /  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 135 | 32 29 | remulcld | ⊢ ( 𝜑  →  ( 𝐵  ·  𝐸 )  ∈  ℝ ) | 
						
							| 136 | 28 33 | remulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐹 )  ∈  ℝ ) | 
						
							| 137 | 135 136 | resubcld | ⊢ ( 𝜑  →  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  ∈  ℝ ) | 
						
							| 138 | 137 62 9 | redivcld | ⊢ ( 𝜑  →  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 )  ∈  ℝ ) | 
						
							| 139 |  | absresq | ⊢ ( ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 )  ∈  ℝ  →  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 )  =  ( ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ↑ 2 ) ) | 
						
							| 140 | 138 139 | syl | ⊢ ( 𝜑  →  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 )  =  ( ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ↑ 2 ) ) | 
						
							| 141 | 115 23 9 | sqdivd | ⊢ ( 𝜑  →  ( ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ↑ 2 )  =  ( ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ↑ 2 )  /  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 142 | 140 141 | eqtrd | ⊢ ( 𝜑  →  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 )  =  ( ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ↑ 2 )  /  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 143 | 142 | oveq2d | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) )  =  ( 𝐷  ·  ( ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ↑ 2 )  /  ( 𝐶 ↑ 2 ) ) ) ) | 
						
							| 144 | 115 | sqcld | ⊢ ( 𝜑  →  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 145 | 23 | sqcld | ⊢ ( 𝜑  →  ( 𝐶 ↑ 2 )  ∈  ℂ ) | 
						
							| 146 |  | sqne0 | ⊢ ( 𝐶  ∈  ℂ  →  ( ( 𝐶 ↑ 2 )  ≠  0  ↔  𝐶  ≠  0 ) ) | 
						
							| 147 | 23 146 | syl | ⊢ ( 𝜑  →  ( ( 𝐶 ↑ 2 )  ≠  0  ↔  𝐶  ≠  0 ) ) | 
						
							| 148 | 9 147 | mpbird | ⊢ ( 𝜑  →  ( 𝐶 ↑ 2 )  ≠  0 ) | 
						
							| 149 | 17 144 145 148 | divassd | ⊢ ( 𝜑  →  ( ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ↑ 2 ) )  /  ( 𝐶 ↑ 2 ) )  =  ( 𝐷  ·  ( ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ↑ 2 )  /  ( 𝐶 ↑ 2 ) ) ) ) | 
						
							| 150 | 115 | sqvald | ⊢ ( 𝜑  →  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ↑ 2 )  =  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  ·  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ) ) | 
						
							| 151 | 150 | oveq2d | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ↑ 2 ) )  =  ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  ·  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ) ) ) | 
						
							| 152 | 151 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ↑ 2 ) )  /  ( 𝐶 ↑ 2 ) )  =  ( ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  ·  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ) )  /  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 153 | 143 149 152 | 3eqtr2d | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) )  =  ( ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  ·  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ) )  /  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 154 | 134 153 | oveq12d | ⊢ ( 𝜑  →  ( ( ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) ) ↑ 2 )  −  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) ) )  =  ( ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  ·  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  /  ( 𝐶 ↑ 2 ) )  −  ( ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  ·  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ) )  /  ( 𝐶 ↑ 2 ) ) ) ) | 
						
							| 155 | 22 22 | mulcld | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  ·  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  ∈  ℂ ) | 
						
							| 156 | 115 115 | mulcld | ⊢ ( 𝜑  →  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  ·  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) )  ∈  ℂ ) | 
						
							| 157 | 17 156 | mulcld | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  ·  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ) )  ∈  ℂ ) | 
						
							| 158 | 155 157 145 148 | divsubdird | ⊢ ( 𝜑  →  ( ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  ·  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  −  ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  ·  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ) ) )  /  ( 𝐶 ↑ 2 ) )  =  ( ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  ·  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  /  ( 𝐶 ↑ 2 ) )  −  ( ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  ·  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ) )  /  ( 𝐶 ↑ 2 ) ) ) ) | 
						
							| 159 | 16 21 16 21 | mulsubd | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  ·  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  =  ( ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐴  ·  𝐸 ) )  +  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  −  ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  +  ( ( 𝐴  ·  𝐸 )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) ) ) ) | 
						
							| 160 | 113 114 113 114 | mulsubd | ⊢ ( 𝜑  →  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  ·  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) )  =  ( ( ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) )  +  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) )  −  ( ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) )  +  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) ) | 
						
							| 161 | 160 | oveq2d | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  ·  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ) )  =  ( 𝐷  ·  ( ( ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) )  +  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) )  −  ( ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) )  +  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) ) ) | 
						
							| 162 | 113 113 | mulcld | ⊢ ( 𝜑  →  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) )  ∈  ℂ ) | 
						
							| 163 | 114 114 | mulcld | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) )  ∈  ℂ ) | 
						
							| 164 | 162 163 | addcld | ⊢ ( 𝜑  →  ( ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) )  +  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) )  ∈  ℂ ) | 
						
							| 165 | 113 114 | mulcld | ⊢ ( 𝜑  →  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) )  ∈  ℂ ) | 
						
							| 166 | 165 165 | addcld | ⊢ ( 𝜑  →  ( ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) )  +  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) )  ∈  ℂ ) | 
						
							| 167 | 17 164 166 | subdid | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) )  +  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) )  −  ( ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) )  +  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) )  =  ( ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) )  +  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) )  −  ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) )  +  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) ) ) | 
						
							| 168 | 17 162 163 | adddid | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) )  +  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) )  =  ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) ) )  +  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) ) | 
						
							| 169 | 17 165 165 | adddid | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) )  +  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) )  =  ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) )  +  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) ) | 
						
							| 170 | 168 169 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) )  +  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) )  −  ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) )  +  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) )  =  ( ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) ) )  +  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) )  −  ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) )  +  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) ) ) | 
						
							| 171 | 161 167 170 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  ·  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ) )  =  ( ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) ) )  +  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) )  −  ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) )  +  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) ) ) | 
						
							| 172 | 159 171 | oveq12d | ⊢ ( 𝜑  →  ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  ·  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  −  ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  ·  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ) ) )  =  ( ( ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐴  ·  𝐸 ) )  +  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  −  ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  +  ( ( 𝐴  ·  𝐸 )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) ) )  −  ( ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) ) )  +  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) )  −  ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) )  +  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) ) ) ) | 
						
							| 173 | 172 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  ·  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  −  ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  ·  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ) ) )  /  ( 𝐶 ↑ 2 ) )  =  ( ( ( ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐴  ·  𝐸 ) )  +  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  −  ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  +  ( ( 𝐴  ·  𝐸 )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) ) )  −  ( ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) ) )  +  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) )  −  ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) )  +  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) ) )  /  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 174 | 16 21 | mulcomd | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐸 )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  =  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐴  ·  𝐸 ) ) ) | 
						
							| 175 | 17 20 16 | mulassd | ⊢ ( 𝜑  →  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐴  ·  𝐸 ) )  =  ( 𝐷  ·  ( ( 𝐵  ·  𝐹 )  ·  ( 𝐴  ·  𝐸 ) ) ) ) | 
						
							| 176 | 14 15 | mulcomd | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐸 )  =  ( 𝐸  ·  𝐴 ) ) | 
						
							| 177 | 176 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐵  ·  𝐹 )  ·  ( 𝐴  ·  𝐸 ) )  =  ( ( 𝐵  ·  𝐹 )  ·  ( 𝐸  ·  𝐴 ) ) ) | 
						
							| 178 | 18 19 15 14 | mul4d | ⊢ ( 𝜑  →  ( ( 𝐵  ·  𝐹 )  ·  ( 𝐸  ·  𝐴 ) )  =  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐹  ·  𝐴 ) ) ) | 
						
							| 179 | 19 14 | mulcomd | ⊢ ( 𝜑  →  ( 𝐹  ·  𝐴 )  =  ( 𝐴  ·  𝐹 ) ) | 
						
							| 180 | 179 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐹  ·  𝐴 ) )  =  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) | 
						
							| 181 | 177 178 180 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝐵  ·  𝐹 )  ·  ( 𝐴  ·  𝐸 ) )  =  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) | 
						
							| 182 | 181 | oveq2d | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( 𝐵  ·  𝐹 )  ·  ( 𝐴  ·  𝐸 ) ) )  =  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) | 
						
							| 183 | 174 175 182 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐸 )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  =  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) | 
						
							| 184 | 183 183 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  +  ( ( 𝐴  ·  𝐸 )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  =  ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) )  +  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) ) | 
						
							| 185 | 184 | oveq2d | ⊢ ( 𝜑  →  ( ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐴  ·  𝐸 ) )  +  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  −  ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  +  ( ( 𝐴  ·  𝐸 )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) ) )  =  ( ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐴  ·  𝐸 ) )  +  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  −  ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) )  +  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) ) ) | 
						
							| 186 | 185 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐴  ·  𝐸 ) )  +  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  −  ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  +  ( ( 𝐴  ·  𝐸 )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) ) )  −  ( ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) ) )  +  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) )  −  ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) )  +  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) ) )  =  ( ( ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐴  ·  𝐸 ) )  +  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  −  ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) )  +  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) )  −  ( ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) ) )  +  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) )  −  ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) )  +  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) ) ) ) | 
						
							| 187 | 16 16 | mulcld | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐸 )  ·  ( 𝐴  ·  𝐸 ) )  ∈  ℂ ) | 
						
							| 188 | 21 21 | mulcld | ⊢ ( 𝜑  →  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  ∈  ℂ ) | 
						
							| 189 | 187 188 | addcld | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐴  ·  𝐸 ) )  +  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  ∈  ℂ ) | 
						
							| 190 | 17 162 | mulcld | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) ) )  ∈  ℂ ) | 
						
							| 191 | 17 163 | mulcld | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) )  ∈  ℂ ) | 
						
							| 192 | 190 191 | addcld | ⊢ ( 𝜑  →  ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) ) )  +  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) )  ∈  ℂ ) | 
						
							| 193 | 17 165 | mulcld | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) )  ∈  ℂ ) | 
						
							| 194 | 193 193 | addcld | ⊢ ( 𝜑  →  ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) )  +  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) )  ∈  ℂ ) | 
						
							| 195 | 189 192 194 | nnncan2d | ⊢ ( 𝜑  →  ( ( ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐴  ·  𝐸 ) )  +  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  −  ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) )  +  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) )  −  ( ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) ) )  +  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) )  −  ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) )  +  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) ) )  =  ( ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐴  ·  𝐸 ) )  +  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  −  ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) ) )  +  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) ) ) | 
						
							| 196 | 187 188 190 191 | addsub4d | ⊢ ( 𝜑  →  ( ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐴  ·  𝐸 ) )  +  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  −  ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) ) )  +  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) )  =  ( ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐴  ·  𝐸 ) )  −  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) ) ) )  +  ( ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  −  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) ) ) | 
						
							| 197 | 16 | sqvald | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐸 ) ↑ 2 )  =  ( ( 𝐴  ·  𝐸 )  ·  ( 𝐴  ·  𝐸 ) ) ) | 
						
							| 198 | 113 | sqvald | ⊢ ( 𝜑  →  ( ( 𝐵  ·  𝐸 ) ↑ 2 )  =  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) ) ) | 
						
							| 199 | 198 | oveq2d | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 ) ↑ 2 ) )  =  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) ) ) ) | 
						
							| 200 | 197 199 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  𝐸 ) ↑ 2 )  −  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 ) ↑ 2 ) ) )  =  ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐴  ·  𝐸 ) )  −  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) ) ) ) ) | 
						
							| 201 | 21 | sqvald | ⊢ ( 𝜑  →  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ↑ 2 )  =  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) ) | 
						
							| 202 | 114 | sqvald | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐹 ) ↑ 2 )  =  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) | 
						
							| 203 | 202 | oveq2d | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 ) ↑ 2 ) )  =  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) | 
						
							| 204 | 201 203 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ↑ 2 )  −  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 ) ↑ 2 ) ) )  =  ( ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  −  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) ) | 
						
							| 205 | 200 204 | oveq12d | ⊢ ( 𝜑  →  ( ( ( ( 𝐴  ·  𝐸 ) ↑ 2 )  −  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 ) ↑ 2 ) ) )  +  ( ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ↑ 2 )  −  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 ) ↑ 2 ) ) ) )  =  ( ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐴  ·  𝐸 ) )  −  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) ) ) )  +  ( ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  −  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) ) ) | 
						
							| 206 | 14 15 | sqmuld | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐸 ) ↑ 2 )  =  ( ( 𝐴 ↑ 2 )  ·  ( 𝐸 ↑ 2 ) ) ) | 
						
							| 207 | 18 15 | sqmuld | ⊢ ( 𝜑  →  ( ( 𝐵  ·  𝐸 ) ↑ 2 )  =  ( ( 𝐵 ↑ 2 )  ·  ( 𝐸 ↑ 2 ) ) ) | 
						
							| 208 | 207 | oveq2d | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 ) ↑ 2 ) )  =  ( 𝐷  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝐸 ↑ 2 ) ) ) ) | 
						
							| 209 | 18 | sqcld | ⊢ ( 𝜑  →  ( 𝐵 ↑ 2 )  ∈  ℂ ) | 
						
							| 210 | 17 209 41 | mulassd | ⊢ ( 𝜑  →  ( ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  ·  ( 𝐸 ↑ 2 ) )  =  ( 𝐷  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝐸 ↑ 2 ) ) ) ) | 
						
							| 211 | 208 210 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 ) ↑ 2 ) )  =  ( ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  ·  ( 𝐸 ↑ 2 ) ) ) | 
						
							| 212 | 206 211 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  𝐸 ) ↑ 2 )  −  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 ) ↑ 2 ) ) )  =  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐸 ↑ 2 ) )  −  ( ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  ·  ( 𝐸 ↑ 2 ) ) ) ) | 
						
							| 213 | 17 | sqvald | ⊢ ( 𝜑  →  ( 𝐷 ↑ 2 )  =  ( 𝐷  ·  𝐷 ) ) | 
						
							| 214 | 18 19 | sqmuld | ⊢ ( 𝜑  →  ( ( 𝐵  ·  𝐹 ) ↑ 2 )  =  ( ( 𝐵 ↑ 2 )  ·  ( 𝐹 ↑ 2 ) ) ) | 
						
							| 215 | 213 214 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝐷 ↑ 2 )  ·  ( ( 𝐵  ·  𝐹 ) ↑ 2 ) )  =  ( ( 𝐷  ·  𝐷 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 216 | 17 20 | sqmuld | ⊢ ( 𝜑  →  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ↑ 2 )  =  ( ( 𝐷 ↑ 2 )  ·  ( ( 𝐵  ·  𝐹 ) ↑ 2 ) ) ) | 
						
							| 217 | 17 17 | mulcld | ⊢ ( 𝜑  →  ( 𝐷  ·  𝐷 )  ∈  ℂ ) | 
						
							| 218 | 217 209 42 | mulassd | ⊢ ( 𝜑  →  ( ( ( 𝐷  ·  𝐷 )  ·  ( 𝐵 ↑ 2 ) )  ·  ( 𝐹 ↑ 2 ) )  =  ( ( 𝐷  ·  𝐷 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 219 | 215 216 218 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ↑ 2 )  =  ( ( ( 𝐷  ·  𝐷 )  ·  ( 𝐵 ↑ 2 ) )  ·  ( 𝐹 ↑ 2 ) ) ) | 
						
							| 220 | 14 19 | sqmuld | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐹 ) ↑ 2 )  =  ( ( 𝐴 ↑ 2 )  ·  ( 𝐹 ↑ 2 ) ) ) | 
						
							| 221 | 220 | oveq2d | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 ) ↑ 2 ) )  =  ( 𝐷  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 222 | 14 | sqcld | ⊢ ( 𝜑  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 223 | 17 222 42 | mulassd | ⊢ ( 𝜑  →  ( ( 𝐷  ·  ( 𝐴 ↑ 2 ) )  ·  ( 𝐹 ↑ 2 ) )  =  ( 𝐷  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 224 | 221 223 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 ) ↑ 2 ) )  =  ( ( 𝐷  ·  ( 𝐴 ↑ 2 ) )  ·  ( 𝐹 ↑ 2 ) ) ) | 
						
							| 225 | 219 224 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ↑ 2 )  −  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 ) ↑ 2 ) ) )  =  ( ( ( ( 𝐷  ·  𝐷 )  ·  ( 𝐵 ↑ 2 ) )  ·  ( 𝐹 ↑ 2 ) )  −  ( ( 𝐷  ·  ( 𝐴 ↑ 2 ) )  ·  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 226 | 212 225 | oveq12d | ⊢ ( 𝜑  →  ( ( ( ( 𝐴  ·  𝐸 ) ↑ 2 )  −  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 ) ↑ 2 ) ) )  +  ( ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ↑ 2 )  −  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 ) ↑ 2 ) ) ) )  =  ( ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐸 ↑ 2 ) )  −  ( ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  ·  ( 𝐸 ↑ 2 ) ) )  +  ( ( ( ( 𝐷  ·  𝐷 )  ·  ( 𝐵 ↑ 2 ) )  ·  ( 𝐹 ↑ 2 ) )  −  ( ( 𝐷  ·  ( 𝐴 ↑ 2 ) )  ·  ( 𝐹 ↑ 2 ) ) ) ) ) | 
						
							| 227 | 17 209 | mulcld | ⊢ ( 𝜑  →  ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 228 | 222 227 41 | subdird | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  ·  ( 𝐸 ↑ 2 ) )  =  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐸 ↑ 2 ) )  −  ( ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  ·  ( 𝐸 ↑ 2 ) ) ) ) | 
						
							| 229 | 10 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  ·  ( 𝐸 ↑ 2 ) )  =  ( 𝐶  ·  ( 𝐸 ↑ 2 ) ) ) | 
						
							| 230 | 228 229 | eqtr3d | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐸 ↑ 2 ) )  −  ( ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  ·  ( 𝐸 ↑ 2 ) ) )  =  ( 𝐶  ·  ( 𝐸 ↑ 2 ) ) ) | 
						
							| 231 | 17 17 209 | mulassd | ⊢ ( 𝜑  →  ( ( 𝐷  ·  𝐷 )  ·  ( 𝐵 ↑ 2 ) )  =  ( 𝐷  ·  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 232 | 231 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐷  ·  𝐷 )  ·  ( 𝐵 ↑ 2 ) )  −  ( 𝐷  ·  ( 𝐴 ↑ 2 ) ) )  =  ( ( 𝐷  ·  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  −  ( 𝐷  ·  ( 𝐴 ↑ 2 ) ) ) ) | 
						
							| 233 | 232 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( 𝐷  ·  𝐷 )  ·  ( 𝐵 ↑ 2 ) )  −  ( 𝐷  ·  ( 𝐴 ↑ 2 ) ) )  ·  ( 𝐹 ↑ 2 ) )  =  ( ( ( 𝐷  ·  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  −  ( 𝐷  ·  ( 𝐴 ↑ 2 ) ) )  ·  ( 𝐹 ↑ 2 ) ) ) | 
						
							| 234 | 217 209 | mulcld | ⊢ ( 𝜑  →  ( ( 𝐷  ·  𝐷 )  ·  ( 𝐵 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 235 | 17 222 | mulcld | ⊢ ( 𝜑  →  ( 𝐷  ·  ( 𝐴 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 236 | 234 235 42 | subdird | ⊢ ( 𝜑  →  ( ( ( ( 𝐷  ·  𝐷 )  ·  ( 𝐵 ↑ 2 ) )  −  ( 𝐷  ·  ( 𝐴 ↑ 2 ) ) )  ·  ( 𝐹 ↑ 2 ) )  =  ( ( ( ( 𝐷  ·  𝐷 )  ·  ( 𝐵 ↑ 2 ) )  ·  ( 𝐹 ↑ 2 ) )  −  ( ( 𝐷  ·  ( 𝐴 ↑ 2 ) )  ·  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 237 |  | subdi | ⊢ ( ( 𝐷  ∈  ℂ  ∧  ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  ∈  ℂ  ∧  ( 𝐴 ↑ 2 )  ∈  ℂ )  →  ( 𝐷  ·  ( ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  −  ( 𝐴 ↑ 2 ) ) )  =  ( ( 𝐷  ·  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  −  ( 𝐷  ·  ( 𝐴 ↑ 2 ) ) ) ) | 
						
							| 238 | 237 | eqcomd | ⊢ ( ( 𝐷  ∈  ℂ  ∧  ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  ∈  ℂ  ∧  ( 𝐴 ↑ 2 )  ∈  ℂ )  →  ( ( 𝐷  ·  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  −  ( 𝐷  ·  ( 𝐴 ↑ 2 ) ) )  =  ( 𝐷  ·  ( ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  −  ( 𝐴 ↑ 2 ) ) ) ) | 
						
							| 239 | 17 227 222 238 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐷  ·  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  −  ( 𝐷  ·  ( 𝐴 ↑ 2 ) ) )  =  ( 𝐷  ·  ( ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  −  ( 𝐴 ↑ 2 ) ) ) ) | 
						
							| 240 |  | negsubdi2 | ⊢ ( ( ( 𝐴 ↑ 2 )  ∈  ℂ  ∧  ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  ∈  ℂ )  →  - ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  ( ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  −  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 241 | 240 | eqcomd | ⊢ ( ( ( 𝐴 ↑ 2 )  ∈  ℂ  ∧  ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  ∈  ℂ )  →  ( ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  −  ( 𝐴 ↑ 2 ) )  =  - ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 242 | 222 227 241 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  −  ( 𝐴 ↑ 2 ) )  =  - ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 243 | 10 | negeqd | ⊢ ( 𝜑  →  - ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  - 𝐶 ) | 
						
							| 244 | 242 243 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  −  ( 𝐴 ↑ 2 ) )  =  - 𝐶 ) | 
						
							| 245 | 244 | oveq2d | ⊢ ( 𝜑  →  ( 𝐷  ·  ( ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  −  ( 𝐴 ↑ 2 ) ) )  =  ( 𝐷  ·  - 𝐶 ) ) | 
						
							| 246 | 17 23 | mulneg2d | ⊢ ( 𝜑  →  ( 𝐷  ·  - 𝐶 )  =  - ( 𝐷  ·  𝐶 ) ) | 
						
							| 247 | 239 245 246 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝐷  ·  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  −  ( 𝐷  ·  ( 𝐴 ↑ 2 ) ) )  =  - ( 𝐷  ·  𝐶 ) ) | 
						
							| 248 | 247 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐷  ·  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  −  ( 𝐷  ·  ( 𝐴 ↑ 2 ) ) )  ·  ( 𝐹 ↑ 2 ) )  =  ( - ( 𝐷  ·  𝐶 )  ·  ( 𝐹 ↑ 2 ) ) ) | 
						
							| 249 | 233 236 248 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( ( ( 𝐷  ·  𝐷 )  ·  ( 𝐵 ↑ 2 ) )  ·  ( 𝐹 ↑ 2 ) )  −  ( ( 𝐷  ·  ( 𝐴 ↑ 2 ) )  ·  ( 𝐹 ↑ 2 ) ) )  =  ( - ( 𝐷  ·  𝐶 )  ·  ( 𝐹 ↑ 2 ) ) ) | 
						
							| 250 | 230 249 | oveq12d | ⊢ ( 𝜑  →  ( ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐸 ↑ 2 ) )  −  ( ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  ·  ( 𝐸 ↑ 2 ) ) )  +  ( ( ( ( 𝐷  ·  𝐷 )  ·  ( 𝐵 ↑ 2 ) )  ·  ( 𝐹 ↑ 2 ) )  −  ( ( 𝐷  ·  ( 𝐴 ↑ 2 ) )  ·  ( 𝐹 ↑ 2 ) ) ) )  =  ( ( 𝐶  ·  ( 𝐸 ↑ 2 ) )  +  ( - ( 𝐷  ·  𝐶 )  ·  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 251 | 17 23 | mulcld | ⊢ ( 𝜑  →  ( 𝐷  ·  𝐶 )  ∈  ℂ ) | 
						
							| 252 | 251 42 | mulneg1d | ⊢ ( 𝜑  →  ( - ( 𝐷  ·  𝐶 )  ·  ( 𝐹 ↑ 2 ) )  =  - ( ( 𝐷  ·  𝐶 )  ·  ( 𝐹 ↑ 2 ) ) ) | 
						
							| 253 | 17 23 | mulcomd | ⊢ ( 𝜑  →  ( 𝐷  ·  𝐶 )  =  ( 𝐶  ·  𝐷 ) ) | 
						
							| 254 | 253 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐷  ·  𝐶 )  ·  ( 𝐹 ↑ 2 ) )  =  ( ( 𝐶  ·  𝐷 )  ·  ( 𝐹 ↑ 2 ) ) ) | 
						
							| 255 | 23 17 42 | mulassd | ⊢ ( 𝜑  →  ( ( 𝐶  ·  𝐷 )  ·  ( 𝐹 ↑ 2 ) )  =  ( 𝐶  ·  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 256 | 254 255 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐷  ·  𝐶 )  ·  ( 𝐹 ↑ 2 ) )  =  ( 𝐶  ·  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 257 | 256 | negeqd | ⊢ ( 𝜑  →  - ( ( 𝐷  ·  𝐶 )  ·  ( 𝐹 ↑ 2 ) )  =  - ( 𝐶  ·  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 258 | 252 257 | eqtrd | ⊢ ( 𝜑  →  ( - ( 𝐷  ·  𝐶 )  ·  ( 𝐹 ↑ 2 ) )  =  - ( 𝐶  ·  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 259 | 258 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐶  ·  ( 𝐸 ↑ 2 ) )  +  ( - ( 𝐷  ·  𝐶 )  ·  ( 𝐹 ↑ 2 ) ) )  =  ( ( 𝐶  ·  ( 𝐸 ↑ 2 ) )  +  - ( 𝐶  ·  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) ) ) | 
						
							| 260 | 23 41 | mulcld | ⊢ ( 𝜑  →  ( 𝐶  ·  ( 𝐸 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 261 | 23 43 | mulcld | ⊢ ( 𝜑  →  ( 𝐶  ·  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 262 | 260 261 | negsubd | ⊢ ( 𝜑  →  ( ( 𝐶  ·  ( 𝐸 ↑ 2 ) )  +  - ( 𝐶  ·  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) )  =  ( ( 𝐶  ·  ( 𝐸 ↑ 2 ) )  −  ( 𝐶  ·  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) ) ) | 
						
							| 263 | 11 | oveq2d | ⊢ ( 𝜑  →  ( 𝐶  ·  ( ( 𝐸 ↑ 2 )  −  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) )  =  ( 𝐶  ·  𝐶 ) ) | 
						
							| 264 |  | subdi | ⊢ ( ( 𝐶  ∈  ℂ  ∧  ( 𝐸 ↑ 2 )  ∈  ℂ  ∧  ( 𝐷  ·  ( 𝐹 ↑ 2 ) )  ∈  ℂ )  →  ( 𝐶  ·  ( ( 𝐸 ↑ 2 )  −  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) )  =  ( ( 𝐶  ·  ( 𝐸 ↑ 2 ) )  −  ( 𝐶  ·  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) ) ) | 
						
							| 265 | 264 | eqcomd | ⊢ ( ( 𝐶  ∈  ℂ  ∧  ( 𝐸 ↑ 2 )  ∈  ℂ  ∧  ( 𝐷  ·  ( 𝐹 ↑ 2 ) )  ∈  ℂ )  →  ( ( 𝐶  ·  ( 𝐸 ↑ 2 ) )  −  ( 𝐶  ·  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) )  =  ( 𝐶  ·  ( ( 𝐸 ↑ 2 )  −  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) ) ) | 
						
							| 266 | 23 41 43 265 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐶  ·  ( 𝐸 ↑ 2 ) )  −  ( 𝐶  ·  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) )  =  ( 𝐶  ·  ( ( 𝐸 ↑ 2 )  −  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) ) ) | 
						
							| 267 | 23 | sqvald | ⊢ ( 𝜑  →  ( 𝐶 ↑ 2 )  =  ( 𝐶  ·  𝐶 ) ) | 
						
							| 268 | 263 266 267 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( 𝐶  ·  ( 𝐸 ↑ 2 ) )  −  ( 𝐶  ·  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) )  =  ( 𝐶 ↑ 2 ) ) | 
						
							| 269 | 259 262 268 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝐶  ·  ( 𝐸 ↑ 2 ) )  +  ( - ( 𝐷  ·  𝐶 )  ·  ( 𝐹 ↑ 2 ) ) )  =  ( 𝐶 ↑ 2 ) ) | 
						
							| 270 | 226 250 269 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( ( 𝐴  ·  𝐸 ) ↑ 2 )  −  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 ) ↑ 2 ) ) )  +  ( ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ↑ 2 )  −  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 ) ↑ 2 ) ) ) )  =  ( 𝐶 ↑ 2 ) ) | 
						
							| 271 | 196 205 270 | 3eqtr2d | ⊢ ( 𝜑  →  ( ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐴  ·  𝐸 ) )  +  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  −  ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) ) )  +  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) )  =  ( 𝐶 ↑ 2 ) ) | 
						
							| 272 | 186 195 271 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐴  ·  𝐸 ) )  +  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  −  ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  +  ( ( 𝐴  ·  𝐸 )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) ) )  −  ( ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) ) )  +  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) )  −  ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) )  +  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) ) )  =  ( 𝐶 ↑ 2 ) ) | 
						
							| 273 | 272 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐴  ·  𝐸 ) )  +  ( ( 𝐷  ·  ( 𝐵  ·  𝐹 ) )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  −  ( ( ( 𝐴  ·  𝐸 )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  +  ( ( 𝐴  ·  𝐸 )  ·  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) ) )  −  ( ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐵  ·  𝐸 ) ) )  +  ( 𝐷  ·  ( ( 𝐴  ·  𝐹 )  ·  ( 𝐴  ·  𝐹 ) ) ) )  −  ( ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) )  +  ( 𝐷  ·  ( ( 𝐵  ·  𝐸 )  ·  ( 𝐴  ·  𝐹 ) ) ) ) ) )  /  ( 𝐶 ↑ 2 ) )  =  ( ( 𝐶 ↑ 2 )  /  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 274 | 145 148 | dividd | ⊢ ( 𝜑  →  ( ( 𝐶 ↑ 2 )  /  ( 𝐶 ↑ 2 ) )  =  1 ) | 
						
							| 275 | 173 273 274 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  ·  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) ) )  −  ( 𝐷  ·  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  ·  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ) ) )  /  ( 𝐶 ↑ 2 ) )  =  1 ) | 
						
							| 276 | 154 158 275 | 3eqtr2d | ⊢ ( 𝜑  →  ( ( ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) ) ↑ 2 )  −  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) ) )  =  1 ) | 
						
							| 277 | 276 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  =  0 )  →  ( ( ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) ) ↑ 2 )  −  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) ) )  =  1 ) | 
						
							| 278 |  | simpr | ⊢ ( ( 𝜑  ∧  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  =  0 )  →  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  =  0 ) | 
						
							| 279 | 278 | fvoveq1d | ⊢ ( ( 𝜑  ∧  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  =  0 )  →  ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) )  =  ( abs ‘ ( 0  /  𝐶 ) ) ) | 
						
							| 280 | 23 9 | div0d | ⊢ ( 𝜑  →  ( 0  /  𝐶 )  =  0 ) | 
						
							| 281 | 280 | abs00bd | ⊢ ( 𝜑  →  ( abs ‘ ( 0  /  𝐶 ) )  =  0 ) | 
						
							| 282 | 281 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  =  0 )  →  ( abs ‘ ( 0  /  𝐶 ) )  =  0 ) | 
						
							| 283 | 279 282 | eqtrd | ⊢ ( ( 𝜑  ∧  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  =  0 )  →  ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) )  =  0 ) | 
						
							| 284 | 283 | sq0id | ⊢ ( ( 𝜑  ∧  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  =  0 )  →  ( ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) ) ↑ 2 )  =  0 ) | 
						
							| 285 | 284 | oveq1d | ⊢ ( ( 𝜑  ∧  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  =  0 )  →  ( ( ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) ) ↑ 2 )  −  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) ) )  =  ( 0  −  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) ) ) ) | 
						
							| 286 | 277 285 | eqtr3d | ⊢ ( ( 𝜑  ∧  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  =  0 )  →  1  =  ( 0  −  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) ) ) ) | 
						
							| 287 | 128 286 | mtand | ⊢ ( 𝜑  →  ¬  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  =  0 ) | 
						
							| 288 | 287 | neqned | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  ≠  0 ) | 
						
							| 289 | 22 23 288 9 | divne0d | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 )  ≠  0 ) | 
						
							| 290 |  | nnabscl | ⊢ ( ( ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 )  ∈  ℤ  ∧  ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 )  ≠  0 )  →  ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) )  ∈  ℕ ) | 
						
							| 291 | 107 289 290 | syl2anc | ⊢ ( 𝜑  →  ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) )  ∈  ℕ ) | 
						
							| 292 | 115 23 9 | absdivd | ⊢ ( 𝜑  →  ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) )  =  ( ( abs ‘ ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) )  /  ( abs ‘ 𝐶 ) ) ) | 
						
							| 293 |  | negsub | ⊢ ( ( ( 𝐵  ·  𝐸 )  ∈  ℂ  ∧  ( 𝐴  ·  𝐹 )  ∈  ℂ )  →  ( ( 𝐵  ·  𝐸 )  +  - ( 𝐴  ·  𝐹 ) )  =  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) ) | 
						
							| 294 | 293 | eqcomd | ⊢ ( ( ( 𝐵  ·  𝐸 )  ∈  ℂ  ∧  ( 𝐴  ·  𝐹 )  ∈  ℂ )  →  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  =  ( ( 𝐵  ·  𝐸 )  +  - ( 𝐴  ·  𝐹 ) ) ) | 
						
							| 295 | 113 114 294 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  =  ( ( 𝐵  ·  𝐸 )  +  - ( 𝐴  ·  𝐹 ) ) ) | 
						
							| 296 | 295 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) )  =  ( ( ( 𝐵  ·  𝐸 )  +  - ( 𝐴  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 297 | 136 | renegcld | ⊢ ( 𝜑  →  - ( 𝐴  ·  𝐹 )  ∈  ℝ ) | 
						
							| 298 | 19 15 | mulcomd | ⊢ ( 𝜑  →  ( 𝐹  ·  𝐸 )  =  ( 𝐸  ·  𝐹 ) ) | 
						
							| 299 | 298 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐹  ·  𝐸 )  mod  ( abs ‘ 𝐶 ) )  =  ( ( 𝐸  ·  𝐹 )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 300 |  | modmul1 | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝐹  ∈  ℝ )  ∧  ( 𝐸  ∈  ℤ  ∧  ( abs ‘ 𝐶 )  ∈  ℝ+ )  ∧  ( 𝐵  mod  ( abs ‘ 𝐶 ) )  =  ( 𝐹  mod  ( abs ‘ 𝐶 ) ) )  →  ( ( 𝐵  ·  𝐸 )  mod  ( abs ‘ 𝐶 ) )  =  ( ( 𝐹  ·  𝐸 )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 301 | 32 33 38 37 13 300 | syl221anc | ⊢ ( 𝜑  →  ( ( 𝐵  ·  𝐸 )  mod  ( abs ‘ 𝐶 ) )  =  ( ( 𝐹  ·  𝐸 )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 302 |  | modmul1 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐸  ∈  ℝ )  ∧  ( 𝐹  ∈  ℤ  ∧  ( abs ‘ 𝐶 )  ∈  ℝ+ )  ∧  ( 𝐴  mod  ( abs ‘ 𝐶 ) )  =  ( 𝐸  mod  ( abs ‘ 𝐶 ) ) )  →  ( ( 𝐴  ·  𝐹 )  mod  ( abs ‘ 𝐶 ) )  =  ( ( 𝐸  ·  𝐹 )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 303 | 28 29 80 37 12 302 | syl221anc | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐹 )  mod  ( abs ‘ 𝐶 ) )  =  ( ( 𝐸  ·  𝐹 )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 304 | 299 301 303 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( 𝐵  ·  𝐸 )  mod  ( abs ‘ 𝐶 ) )  =  ( ( 𝐴  ·  𝐹 )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 305 |  | modadd1 | ⊢ ( ( ( ( 𝐵  ·  𝐸 )  ∈  ℝ  ∧  ( 𝐴  ·  𝐹 )  ∈  ℝ )  ∧  ( - ( 𝐴  ·  𝐹 )  ∈  ℝ  ∧  ( abs ‘ 𝐶 )  ∈  ℝ+ )  ∧  ( ( 𝐵  ·  𝐸 )  mod  ( abs ‘ 𝐶 ) )  =  ( ( 𝐴  ·  𝐹 )  mod  ( abs ‘ 𝐶 ) ) )  →  ( ( ( 𝐵  ·  𝐸 )  +  - ( 𝐴  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) )  =  ( ( ( 𝐴  ·  𝐹 )  +  - ( 𝐴  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 306 | 135 136 297 37 304 305 | syl221anc | ⊢ ( 𝜑  →  ( ( ( 𝐵  ·  𝐸 )  +  - ( 𝐴  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) )  =  ( ( ( 𝐴  ·  𝐹 )  +  - ( 𝐴  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 307 | 114 | negidd | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐹 )  +  - ( 𝐴  ·  𝐹 ) )  =  0 ) | 
						
							| 308 | 307 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  𝐹 )  +  - ( 𝐴  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) )  =  ( 0  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 309 | 296 306 308 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) )  =  ( 0  mod  ( abs ‘ 𝐶 ) ) ) | 
						
							| 310 | 309 68 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) )  =  0 ) | 
						
							| 311 |  | absmod0 | ⊢ ( ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  ∈  ℝ  ∧  ( abs ‘ 𝐶 )  ∈  ℝ+ )  →  ( ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) )  =  0  ↔  ( ( abs ‘ ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) )  mod  ( abs ‘ 𝐶 ) )  =  0 ) ) | 
						
							| 312 | 137 37 311 | syl2anc | ⊢ ( 𝜑  →  ( ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  mod  ( abs ‘ 𝐶 ) )  =  0  ↔  ( ( abs ‘ ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) )  mod  ( abs ‘ 𝐶 ) )  =  0 ) ) | 
						
							| 313 | 310 312 | mpbid | ⊢ ( 𝜑  →  ( ( abs ‘ ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) )  mod  ( abs ‘ 𝐶 ) )  =  0 ) | 
						
							| 314 | 115 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) )  ∈  ℝ ) | 
						
							| 315 |  | mod0 | ⊢ ( ( ( abs ‘ ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) )  ∈  ℝ  ∧  ( abs ‘ 𝐶 )  ∈  ℝ+ )  →  ( ( ( abs ‘ ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) )  mod  ( abs ‘ 𝐶 ) )  =  0  ↔  ( ( abs ‘ ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) )  /  ( abs ‘ 𝐶 ) )  ∈  ℤ ) ) | 
						
							| 316 | 314 37 315 | syl2anc | ⊢ ( 𝜑  →  ( ( ( abs ‘ ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) )  mod  ( abs ‘ 𝐶 ) )  =  0  ↔  ( ( abs ‘ ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) )  /  ( abs ‘ 𝐶 ) )  ∈  ℤ ) ) | 
						
							| 317 | 313 316 | mpbid | ⊢ ( 𝜑  →  ( ( abs ‘ ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) ) )  /  ( abs ‘ 𝐶 ) )  ∈  ℤ ) | 
						
							| 318 | 292 317 | eqeltrd | ⊢ ( 𝜑  →  ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) )  ∈  ℤ ) | 
						
							| 319 |  | absz | ⊢ ( ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 )  ∈  ℝ  →  ( ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 )  ∈  ℤ  ↔  ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) )  ∈  ℤ ) ) | 
						
							| 320 | 138 319 | syl | ⊢ ( 𝜑  →  ( ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 )  ∈  ℤ  ↔  ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) )  ∈  ℤ ) ) | 
						
							| 321 | 318 320 | mpbird | ⊢ ( 𝜑  →  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 )  ∈  ℤ ) | 
						
							| 322 | 7 | nnne0d | ⊢ ( 𝜑  →  𝐹  ≠  0 ) | 
						
							| 323 | 6 | nnne0d | ⊢ ( 𝜑  →  𝐸  ≠  0 ) | 
						
							| 324 | 18 19 14 15 322 323 | divmuleqd | ⊢ ( 𝜑  →  ( ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 )  ↔  ( 𝐵  ·  𝐸 )  =  ( 𝐴  ·  𝐹 ) ) ) | 
						
							| 325 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( 𝐸 ↑ 2 )  −  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  =  𝐶 ) | 
						
							| 326 | 325 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  𝐶  =  ( ( 𝐸 ↑ 2 )  −  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 327 | 326 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  ·  𝐶 )  =  ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  ·  ( ( 𝐸 ↑ 2 )  −  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) ) ) | 
						
							| 328 | 18 19 322 | divcld | ⊢ ( 𝜑  →  ( 𝐵  /  𝐹 )  ∈  ℂ ) | 
						
							| 329 | 328 | sqcld | ⊢ ( 𝜑  →  ( ( 𝐵  /  𝐹 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 330 | 329 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( 𝐵  /  𝐹 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 331 | 41 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( 𝐸 ↑ 2 )  ∈  ℂ ) | 
						
							| 332 | 43 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( 𝐷  ·  ( 𝐹 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 333 | 330 331 332 | subdid | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  ·  ( ( 𝐸 ↑ 2 )  −  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) )  =  ( ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  ·  ( 𝐸 ↑ 2 ) )  −  ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  ·  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) ) ) | 
						
							| 334 |  | oveq1 | ⊢ ( ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 )  →  ( ( 𝐵  /  𝐹 ) ↑ 2 )  =  ( ( 𝐴  /  𝐸 ) ↑ 2 ) ) | 
						
							| 335 | 334 | oveq1d | ⊢ ( ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 )  →  ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  ·  ( 𝐸 ↑ 2 ) )  =  ( ( ( 𝐴  /  𝐸 ) ↑ 2 )  ·  ( 𝐸 ↑ 2 ) ) ) | 
						
							| 336 | 335 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  ·  ( 𝐸 ↑ 2 ) )  =  ( ( ( 𝐴  /  𝐸 ) ↑ 2 )  ·  ( 𝐸 ↑ 2 ) ) ) | 
						
							| 337 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 338 | 15 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  𝐸  ∈  ℂ ) | 
						
							| 339 | 323 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  𝐸  ≠  0 ) | 
						
							| 340 | 337 338 339 | sqdivd | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( 𝐴  /  𝐸 ) ↑ 2 )  =  ( ( 𝐴 ↑ 2 )  /  ( 𝐸 ↑ 2 ) ) ) | 
						
							| 341 | 340 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( ( 𝐴  /  𝐸 ) ↑ 2 )  ·  ( 𝐸 ↑ 2 ) )  =  ( ( ( 𝐴 ↑ 2 )  /  ( 𝐸 ↑ 2 ) )  ·  ( 𝐸 ↑ 2 ) ) ) | 
						
							| 342 | 222 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 343 |  | sqne0 | ⊢ ( 𝐸  ∈  ℂ  →  ( ( 𝐸 ↑ 2 )  ≠  0  ↔  𝐸  ≠  0 ) ) | 
						
							| 344 | 15 343 | syl | ⊢ ( 𝜑  →  ( ( 𝐸 ↑ 2 )  ≠  0  ↔  𝐸  ≠  0 ) ) | 
						
							| 345 | 323 344 | mpbird | ⊢ ( 𝜑  →  ( 𝐸 ↑ 2 )  ≠  0 ) | 
						
							| 346 | 345 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( 𝐸 ↑ 2 )  ≠  0 ) | 
						
							| 347 | 342 331 346 | divcan1d | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( ( 𝐴 ↑ 2 )  /  ( 𝐸 ↑ 2 ) )  ·  ( 𝐸 ↑ 2 ) )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 348 | 336 341 347 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  ·  ( 𝐸 ↑ 2 ) )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 349 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  𝐷  ∈  ℂ ) | 
						
							| 350 | 42 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( 𝐹 ↑ 2 )  ∈  ℂ ) | 
						
							| 351 | 330 349 350 | mul12d | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  ·  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  =  ( 𝐷  ·  ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  ·  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 352 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 353 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  𝐹  ∈  ℂ ) | 
						
							| 354 | 322 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  𝐹  ≠  0 ) | 
						
							| 355 | 352 353 354 | sqdivd | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( 𝐵  /  𝐹 ) ↑ 2 )  =  ( ( 𝐵 ↑ 2 )  /  ( 𝐹 ↑ 2 ) ) ) | 
						
							| 356 | 355 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  ·  ( 𝐹 ↑ 2 ) )  =  ( ( ( 𝐵 ↑ 2 )  /  ( 𝐹 ↑ 2 ) )  ·  ( 𝐹 ↑ 2 ) ) ) | 
						
							| 357 | 356 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( 𝐷  ·  ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  ·  ( 𝐹 ↑ 2 ) ) )  =  ( 𝐷  ·  ( ( ( 𝐵 ↑ 2 )  /  ( 𝐹 ↑ 2 ) )  ·  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 358 | 209 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( 𝐵 ↑ 2 )  ∈  ℂ ) | 
						
							| 359 |  | sqne0 | ⊢ ( 𝐹  ∈  ℂ  →  ( ( 𝐹 ↑ 2 )  ≠  0  ↔  𝐹  ≠  0 ) ) | 
						
							| 360 | 19 359 | syl | ⊢ ( 𝜑  →  ( ( 𝐹 ↑ 2 )  ≠  0  ↔  𝐹  ≠  0 ) ) | 
						
							| 361 | 322 360 | mpbird | ⊢ ( 𝜑  →  ( 𝐹 ↑ 2 )  ≠  0 ) | 
						
							| 362 | 361 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( 𝐹 ↑ 2 )  ≠  0 ) | 
						
							| 363 | 358 350 362 | divcan1d | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( ( 𝐵 ↑ 2 )  /  ( 𝐹 ↑ 2 ) )  ·  ( 𝐹 ↑ 2 ) )  =  ( 𝐵 ↑ 2 ) ) | 
						
							| 364 | 363 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( 𝐷  ·  ( ( ( 𝐵 ↑ 2 )  /  ( 𝐹 ↑ 2 ) )  ·  ( 𝐹 ↑ 2 ) ) )  =  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 365 | 351 357 364 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  ·  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) )  =  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 366 | 348 365 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  ·  ( 𝐸 ↑ 2 ) )  −  ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  ·  ( 𝐷  ·  ( 𝐹 ↑ 2 ) ) ) )  =  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 367 | 327 333 366 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  ·  𝐶 )  =  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 368 | 10 | eqcomd | ⊢ ( 𝜑  →  𝐶  =  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 369 | 368 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  𝐶  =  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 370 | 367 369 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  ·  𝐶 )  /  𝐶 )  =  ( ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  /  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) ) ) | 
						
							| 371 | 23 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 372 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  𝐶  ≠  0 ) | 
						
							| 373 | 330 371 372 | divcan4d | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  ·  𝐶 )  /  𝐶 )  =  ( ( 𝐵  /  𝐹 ) ↑ 2 ) ) | 
						
							| 374 | 10 10 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  /  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) )  =  ( 𝐶  /  𝐶 ) ) | 
						
							| 375 | 23 9 | dividd | ⊢ ( 𝜑  →  ( 𝐶  /  𝐶 )  =  1 ) | 
						
							| 376 | 374 375 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  /  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) )  =  1 ) | 
						
							| 377 | 376 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  /  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) )  =  1 ) | 
						
							| 378 | 370 373 377 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( 𝐵  /  𝐹 ) ↑ 2 )  =  1 ) | 
						
							| 379 | 32 33 322 | redivcld | ⊢ ( 𝜑  →  ( 𝐵  /  𝐹 )  ∈  ℝ ) | 
						
							| 380 | 2 | nnnn0d | ⊢ ( 𝜑  →  𝐵  ∈  ℕ0 ) | 
						
							| 381 | 380 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  𝐵 ) | 
						
							| 382 | 7 | nngt0d | ⊢ ( 𝜑  →  0  <  𝐹 ) | 
						
							| 383 |  | divge0 | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  ∧  ( 𝐹  ∈  ℝ  ∧  0  <  𝐹 ) )  →  0  ≤  ( 𝐵  /  𝐹 ) ) | 
						
							| 384 | 32 381 33 382 383 | syl22anc | ⊢ ( 𝜑  →  0  ≤  ( 𝐵  /  𝐹 ) ) | 
						
							| 385 | 379 384 | sqrtsqd | ⊢ ( 𝜑  →  ( √ ‘ ( ( 𝐵  /  𝐹 ) ↑ 2 ) )  =  ( 𝐵  /  𝐹 ) ) | 
						
							| 386 | 385 | eqcomd | ⊢ ( 𝜑  →  ( 𝐵  /  𝐹 )  =  ( √ ‘ ( ( 𝐵  /  𝐹 ) ↑ 2 ) ) ) | 
						
							| 387 | 386 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  ∧  ( ( 𝐵  /  𝐹 ) ↑ 2 )  =  1 )  →  ( 𝐵  /  𝐹 )  =  ( √ ‘ ( ( 𝐵  /  𝐹 ) ↑ 2 ) ) ) | 
						
							| 388 |  | fveq2 | ⊢ ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  =  1  →  ( √ ‘ ( ( 𝐵  /  𝐹 ) ↑ 2 ) )  =  ( √ ‘ 1 ) ) | 
						
							| 389 | 388 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  ∧  ( ( 𝐵  /  𝐹 ) ↑ 2 )  =  1 )  →  ( √ ‘ ( ( 𝐵  /  𝐹 ) ↑ 2 ) )  =  ( √ ‘ 1 ) ) | 
						
							| 390 |  | sqrt1 | ⊢ ( √ ‘ 1 )  =  1 | 
						
							| 391 | 390 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  ∧  ( ( 𝐵  /  𝐹 ) ↑ 2 )  =  1 )  →  ( √ ‘ 1 )  =  1 ) | 
						
							| 392 | 387 389 391 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  ∧  ( ( 𝐵  /  𝐹 ) ↑ 2 )  =  1 )  →  ( 𝐵  /  𝐹 )  =  1 ) | 
						
							| 393 | 392 | ex | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  =  1  →  ( 𝐵  /  𝐹 )  =  1 ) ) | 
						
							| 394 |  | simplr | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  ∧  ( 𝐵  /  𝐹 )  =  1 )  →  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) ) | 
						
							| 395 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  ∧  ( 𝐵  /  𝐹 )  =  1 )  →  ( 𝐵  /  𝐹 )  =  1 ) | 
						
							| 396 | 394 395 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  ∧  ( 𝐵  /  𝐹 )  =  1 )  →  ( 𝐴  /  𝐸 )  =  1 ) | 
						
							| 397 | 396 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  ∧  ( 𝐵  /  𝐹 )  =  1 )  →  ( ( 𝐴  /  𝐸 )  ·  𝐸 )  =  ( 1  ·  𝐸 ) ) | 
						
							| 398 | 14 15 323 | divcan1d | ⊢ ( 𝜑  →  ( ( 𝐴  /  𝐸 )  ·  𝐸 )  =  𝐴 ) | 
						
							| 399 | 398 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  ∧  ( 𝐵  /  𝐹 )  =  1 )  →  ( ( 𝐴  /  𝐸 )  ·  𝐸 )  =  𝐴 ) | 
						
							| 400 | 15 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  𝐸 )  =  𝐸 ) | 
						
							| 401 | 400 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  ∧  ( 𝐵  /  𝐹 )  =  1 )  →  ( 1  ·  𝐸 )  =  𝐸 ) | 
						
							| 402 | 397 399 401 | 3eqtr3d | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  ∧  ( 𝐵  /  𝐹 )  =  1 )  →  𝐴  =  𝐸 ) | 
						
							| 403 | 395 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  ∧  ( 𝐵  /  𝐹 )  =  1 )  →  ( ( 𝐵  /  𝐹 )  ·  𝐹 )  =  ( 1  ·  𝐹 ) ) | 
						
							| 404 | 18 19 322 | divcan1d | ⊢ ( 𝜑  →  ( ( 𝐵  /  𝐹 )  ·  𝐹 )  =  𝐵 ) | 
						
							| 405 | 404 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  ∧  ( 𝐵  /  𝐹 )  =  1 )  →  ( ( 𝐵  /  𝐹 )  ·  𝐹 )  =  𝐵 ) | 
						
							| 406 | 19 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  𝐹 )  =  𝐹 ) | 
						
							| 407 | 406 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  ∧  ( 𝐵  /  𝐹 )  =  1 )  →  ( 1  ·  𝐹 )  =  𝐹 ) | 
						
							| 408 | 403 405 407 | 3eqtr3d | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  ∧  ( 𝐵  /  𝐹 )  =  1 )  →  𝐵  =  𝐹 ) | 
						
							| 409 | 402 408 | jca | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  ∧  ( 𝐵  /  𝐹 )  =  1 )  →  ( 𝐴  =  𝐸  ∧  𝐵  =  𝐹 ) ) | 
						
							| 410 | 409 | ex | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( 𝐵  /  𝐹 )  =  1  →  ( 𝐴  =  𝐸  ∧  𝐵  =  𝐹 ) ) ) | 
						
							| 411 | 393 410 | syld | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( ( ( 𝐵  /  𝐹 ) ↑ 2 )  =  1  →  ( 𝐴  =  𝐸  ∧  𝐵  =  𝐹 ) ) ) | 
						
							| 412 | 378 411 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 ) )  →  ( 𝐴  =  𝐸  ∧  𝐵  =  𝐹 ) ) | 
						
							| 413 | 412 | ex | ⊢ ( 𝜑  →  ( ( 𝐵  /  𝐹 )  =  ( 𝐴  /  𝐸 )  →  ( 𝐴  =  𝐸  ∧  𝐵  =  𝐹 ) ) ) | 
						
							| 414 | 324 413 | sylbird | ⊢ ( 𝜑  →  ( ( 𝐵  ·  𝐸 )  =  ( 𝐴  ·  𝐹 )  →  ( 𝐴  =  𝐸  ∧  𝐵  =  𝐹 ) ) ) | 
						
							| 415 | 8 414 | mtod | ⊢ ( 𝜑  →  ¬  ( 𝐵  ·  𝐸 )  =  ( 𝐴  ·  𝐹 ) ) | 
						
							| 416 | 415 | neqned | ⊢ ( 𝜑  →  ( 𝐵  ·  𝐸 )  ≠  ( 𝐴  ·  𝐹 ) ) | 
						
							| 417 | 113 114 416 | subne0d | ⊢ ( 𝜑  →  ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  ≠  0 ) | 
						
							| 418 | 115 23 417 9 | divne0d | ⊢ ( 𝜑  →  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 )  ≠  0 ) | 
						
							| 419 |  | nnabscl | ⊢ ( ( ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 )  ∈  ℤ  ∧  ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 )  ≠  0 )  →  ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) )  ∈  ℕ ) | 
						
							| 420 | 321 418 419 | syl2anc | ⊢ ( 𝜑  →  ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) )  ∈  ℕ ) | 
						
							| 421 |  | oveq1 | ⊢ ( 𝑎  =  ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) )  →  ( 𝑎 ↑ 2 )  =  ( ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) ) ↑ 2 ) ) | 
						
							| 422 | 421 | oveq1d | ⊢ ( 𝑎  =  ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) )  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  ( ( ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) ) ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) ) ) | 
						
							| 423 | 422 | eqeq1d | ⊢ ( 𝑎  =  ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) )  →  ( ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1  ↔  ( ( ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) ) ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 424 |  | oveq1 | ⊢ ( 𝑏  =  ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) )  →  ( 𝑏 ↑ 2 )  =  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) ) | 
						
							| 425 | 424 | oveq2d | ⊢ ( 𝑏  =  ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) )  →  ( 𝐷  ·  ( 𝑏 ↑ 2 ) )  =  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) ) ) | 
						
							| 426 | 425 | oveq2d | ⊢ ( 𝑏  =  ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) )  →  ( ( ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) ) ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  ( ( ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) ) ↑ 2 )  −  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) ) ) ) | 
						
							| 427 | 426 | eqeq1d | ⊢ ( 𝑏  =  ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) )  →  ( ( ( ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) ) ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1  ↔  ( ( ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) ) ↑ 2 )  −  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) ) )  =  1 ) ) | 
						
							| 428 | 423 427 | rspc2ev | ⊢ ( ( ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) )  ∈  ℕ  ∧  ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) )  ∈  ℕ  ∧  ( ( ( abs ‘ ( ( ( 𝐴  ·  𝐸 )  −  ( 𝐷  ·  ( 𝐵  ·  𝐹 ) ) )  /  𝐶 ) ) ↑ 2 )  −  ( 𝐷  ·  ( ( abs ‘ ( ( ( 𝐵  ·  𝐸 )  −  ( 𝐴  ·  𝐹 ) )  /  𝐶 ) ) ↑ 2 ) ) )  =  1 )  →  ∃ 𝑎  ∈  ℕ ∃ 𝑏  ∈  ℕ ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) | 
						
							| 429 | 291 420 276 428 | syl3anc | ⊢ ( 𝜑  →  ∃ 𝑎  ∈  ℕ ∃ 𝑏  ∈  ℕ ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) |