Metamath Proof Explorer


Theorem pellexlem6

Description: Lemma for pellex . Doing a field division between near solutions get us to norm 1, and the modularity constraint ensures we still have an integer. Returning NN guarantees that we are not returning the trivial solution (1,0). We are not explicitly defining the Pell-field, Pell-ring, and Pell-norm explicitly because after this construction is done we will never use them. This is mostly basic algebraic number theory and could be simplified if a generic framework for that were in place. (Contributed by Stefan O'Rear, 19-Oct-2014)

Ref Expression
Hypotheses pellex.ann φA
pellex.bnn φB
pellex.cz φC
pellex.dnn φD
pellex.irr φ¬D
pellex.enn φE
pellex.fnn φF
pellex.neq φ¬A=EB=F
pellex.cn0 φC0
pellex.no1 φA2DB2=C
pellex.no2 φE2DF2=C
pellex.xcg φAmodC=EmodC
pellex.ycg φBmodC=FmodC
Assertion pellexlem6 φaba2Db2=1

Proof

Step Hyp Ref Expression
1 pellex.ann φA
2 pellex.bnn φB
3 pellex.cz φC
4 pellex.dnn φD
5 pellex.irr φ¬D
6 pellex.enn φE
7 pellex.fnn φF
8 pellex.neq φ¬A=EB=F
9 pellex.cn0 φC0
10 pellex.no1 φA2DB2=C
11 pellex.no2 φE2DF2=C
12 pellex.xcg φAmodC=EmodC
13 pellex.ycg φBmodC=FmodC
14 1 nncnd φA
15 6 nncnd φE
16 14 15 mulcld φAE
17 4 nncnd φD
18 2 nncnd φB
19 7 nncnd φF
20 18 19 mulcld φBF
21 17 20 mulcld φDBF
22 16 21 subcld φAEDBF
23 3 zcnd φC
24 22 23 9 absdivd φAEDBFC=AEDBFC
25 16 21 negsubd φAE+DBF=AEDBF
26 25 eqcomd φAEDBF=AE+DBF
27 26 oveq1d φAEDBFmodC=AE+DBFmodC
28 1 nnred φA
29 6 nnred φE
30 28 29 remulcld φAE
31 4 nnred φD
32 2 nnred φB
33 7 nnred φF
34 32 33 remulcld φBF
35 31 34 remulcld φDBF
36 35 renegcld φDBF
37 23 9 absrpcld φC+
38 6 nnzd φE
39 modmul1 AEEC+AmodC=EmodCAEmodC=EEmodC
40 28 29 38 37 12 39 syl221anc φAEmodC=EEmodC
41 15 sqcld φE2
42 19 sqcld φF2
43 17 42 mulcld φDF2
44 41 43 npcand φE2-DF2+DF2=E2
45 15 sqvald φE2=EE
46 44 45 eqtr2d φEE=E2-DF2+DF2
47 46 oveq1d φEEmodC=E2-DF2+DF2modC
48 29 resqcld φE2
49 33 resqcld φF2
50 31 49 remulcld φDF2
51 48 50 resubcld φE2DF2
52 0red φ0
53 23 abscld φC
54 53 recnd φC
55 23 9 absne0d φC0
56 54 55 dividd φCC=1
57 1zzd φ1
58 56 57 eqeltrd φCC
59 mod0 CC+CmodC=0CC
60 53 37 59 syl2anc φCmodC=0CC
61 58 60 mpbird φCmodC=0
62 3 zred φC
63 absmod0 CC+CmodC=0CmodC=0
64 62 37 63 syl2anc φCmodC=0CmodC=0
65 61 64 mpbird φCmodC=0
66 11 oveq1d φE2DF2modC=CmodC
67 0mod C+0modC=0
68 37 67 syl φ0modC=0
69 65 66 68 3eqtr4d φE2DF2modC=0modC
70 modadd1 E2DF20DF2C+E2DF2modC=0modCE2-DF2+DF2modC=0+DF2modC
71 51 52 50 37 69 70 syl221anc φE2-DF2+DF2modC=0+DF2modC
72 43 addlidd φ0+DF2=DF2
73 19 sqvald φF2=FF
74 73 oveq2d φDF2=DFF
75 17 19 19 mul12d φDFF=FDF
76 72 74 75 3eqtrd φ0+DF2=FDF
77 76 oveq1d φ0+DF2modC=FDFmodC
78 47 71 77 3eqtrd φEEmodC=FDFmodC
79 4 nnzd φD
80 7 nnzd φF
81 79 80 zmulcld φDF
82 13 eqcomd φFmodC=BmodC
83 modmul1 FBDFC+FmodC=BmodCFDFmodC=BDFmodC
84 33 32 81 37 82 83 syl221anc φFDFmodC=BDFmodC
85 18 17 19 mul12d φBDF=DBF
86 85 oveq1d φBDFmodC=DBFmodC
87 84 86 eqtrd φFDFmodC=DBFmodC
88 40 78 87 3eqtrd φAEmodC=DBFmodC
89 modadd1 AEDBFDBFC+AEmodC=DBFmodCAE+DBFmodC=DBF+DBFmodC
90 30 35 36 37 88 89 syl221anc φAE+DBFmodC=DBF+DBFmodC
91 21 negidd φDBF+DBF=0
92 91 oveq1d φDBF+DBFmodC=0modC
93 27 90 92 3eqtrd φAEDBFmodC=0modC
94 93 68 eqtrd φAEDBFmodC=0
95 30 35 resubcld φAEDBF
96 absmod0 AEDBFC+AEDBFmodC=0AEDBFmodC=0
97 95 37 96 syl2anc φAEDBFmodC=0AEDBFmodC=0
98 94 97 mpbid φAEDBFmodC=0
99 22 abscld φAEDBF
100 mod0 AEDBFC+AEDBFmodC=0AEDBFC
101 99 37 100 syl2anc φAEDBFmodC=0AEDBFC
102 98 101 mpbid φAEDBFC
103 24 102 eqeltrd φAEDBFC
104 95 62 9 redivcld φAEDBFC
105 absz AEDBFCAEDBFCAEDBFC
106 104 105 syl φAEDBFCAEDBFC
107 103 106 mpbird φAEDBFC
108 0lt1 0<1
109 0re 0
110 1re 1
111 109 110 ltnlei 0<1¬10
112 108 111 mpbi ¬10
113 18 15 mulcld φBE
114 14 19 mulcld φAF
115 113 114 subcld φBEAF
116 115 23 9 divcld φBEAFC
117 116 abscld φBEAFC
118 117 resqcld φBEAFC2
119 4 nnnn0d φD0
120 119 nn0ge0d φ0D
121 117 sqge0d φ0BEAFC2
122 31 118 120 121 mulge0d φ0DBEAFC2
123 31 118 remulcld φDBEAFC2
124 52 123 suble0d φ0DBEAFC200DBEAFC2
125 122 124 mpbird φ0DBEAFC20
126 breq1 1=0DBEAFC2100DBEAFC20
127 125 126 syl5ibrcom φ1=0DBEAFC210
128 112 127 mtoi φ¬1=0DBEAFC2
129 absresq AEDBFCAEDBFC2=AEDBFC2
130 104 129 syl φAEDBFC2=AEDBFC2
131 22 23 9 sqdivd φAEDBFC2=AEDBF2C2
132 22 sqvald φAEDBF2=AEDBFAEDBF
133 132 oveq1d φAEDBF2C2=AEDBFAEDBFC2
134 130 131 133 3eqtrd φAEDBFC2=AEDBFAEDBFC2
135 32 29 remulcld φBE
136 28 33 remulcld φAF
137 135 136 resubcld φBEAF
138 137 62 9 redivcld φBEAFC
139 absresq BEAFCBEAFC2=BEAFC2
140 138 139 syl φBEAFC2=BEAFC2
141 115 23 9 sqdivd φBEAFC2=BEAF2C2
142 140 141 eqtrd φBEAFC2=BEAF2C2
143 142 oveq2d φDBEAFC2=DBEAF2C2
144 115 sqcld φBEAF2
145 23 sqcld φC2
146 sqne0 CC20C0
147 23 146 syl φC20C0
148 9 147 mpbird φC20
149 17 144 145 148 divassd φDBEAF2C2=DBEAF2C2
150 115 sqvald φBEAF2=BEAFBEAF
151 150 oveq2d φDBEAF2=DBEAFBEAF
152 151 oveq1d φDBEAF2C2=DBEAFBEAFC2
153 143 149 152 3eqtr2d φDBEAFC2=DBEAFBEAFC2
154 134 153 oveq12d φAEDBFC2DBEAFC2=AEDBFAEDBFC2DBEAFBEAFC2
155 22 22 mulcld φAEDBFAEDBF
156 115 115 mulcld φBEAFBEAF
157 17 156 mulcld φDBEAFBEAF
158 155 157 145 148 divsubdird φAEDBFAEDBFDBEAFBEAFC2=AEDBFAEDBFC2DBEAFBEAFC2
159 16 21 16 21 mulsubd φAEDBFAEDBF=AEAE+DBFDBF-AEDBF+AEDBF
160 113 114 113 114 mulsubd φBEAFBEAF=BEBE+AFAF-BEAF+BEAF
161 160 oveq2d φDBEAFBEAF=DBEBE+AFAF-BEAF+BEAF
162 113 113 mulcld φBEBE
163 114 114 mulcld φAFAF
164 162 163 addcld φBEBE+AFAF
165 113 114 mulcld φBEAF
166 165 165 addcld φBEAF+BEAF
167 17 164 166 subdid φDBEBE+AFAF-BEAF+BEAF=DBEBE+AFAFDBEAF+BEAF
168 17 162 163 adddid φDBEBE+AFAF=DBEBE+DAFAF
169 17 165 165 adddid φDBEAF+BEAF=DBEAF+DBEAF
170 168 169 oveq12d φDBEBE+AFAFDBEAF+BEAF=DBEBE+DAFAF-DBEAF+DBEAF
171 161 167 170 3eqtrd φDBEAFBEAF=DBEBE+DAFAF-DBEAF+DBEAF
172 159 171 oveq12d φAEDBFAEDBFDBEAFBEAF=AEAE+DBFDBF-AEDBF+AEDBF-DBEBE+DAFAF-DBEAF+DBEAF
173 172 oveq1d φAEDBFAEDBFDBEAFBEAFC2=AEAE+DBFDBF-AEDBF+AEDBF-DBEBE+DAFAF-DBEAF+DBEAFC2
174 16 21 mulcomd φAEDBF=DBFAE
175 17 20 16 mulassd φDBFAE=DBFAE
176 14 15 mulcomd φAE=EA
177 176 oveq2d φBFAE=BFEA
178 18 19 15 14 mul4d φBFEA=BEFA
179 19 14 mulcomd φFA=AF
180 179 oveq2d φBEFA=BEAF
181 177 178 180 3eqtrd φBFAE=BEAF
182 181 oveq2d φDBFAE=DBEAF
183 174 175 182 3eqtrd φAEDBF=DBEAF
184 183 183 oveq12d φAEDBF+AEDBF=DBEAF+DBEAF
185 184 oveq2d φAEAE+DBFDBF-AEDBF+AEDBF=AEAE+DBFDBF-DBEAF+DBEAF
186 185 oveq1d φAEAE+DBFDBF-AEDBF+AEDBF-DBEBE+DAFAF-DBEAF+DBEAF=AEAE+DBFDBF-DBEAF+DBEAF-DBEBE+DAFAF-DBEAF+DBEAF
187 16 16 mulcld φAEAE
188 21 21 mulcld φDBFDBF
189 187 188 addcld φAEAE+DBFDBF
190 17 162 mulcld φDBEBE
191 17 163 mulcld φDAFAF
192 190 191 addcld φDBEBE+DAFAF
193 17 165 mulcld φDBEAF
194 193 193 addcld φDBEAF+DBEAF
195 189 192 194 nnncan2d φAEAE+DBFDBF-DBEAF+DBEAF-DBEBE+DAFAF-DBEAF+DBEAF=AEAE+DBFDBF-DBEBE+DAFAF
196 187 188 190 191 addsub4d φAEAE+DBFDBF-DBEBE+DAFAF=AEAEDBEBE+DBFDBF-DAFAF
197 16 sqvald φAE2=AEAE
198 113 sqvald φBE2=BEBE
199 198 oveq2d φDBE2=DBEBE
200 197 199 oveq12d φAE2DBE2=AEAEDBEBE
201 21 sqvald φDBF2=DBFDBF
202 114 sqvald φAF2=AFAF
203 202 oveq2d φDAF2=DAFAF
204 201 203 oveq12d φDBF2DAF2=DBFDBFDAFAF
205 200 204 oveq12d φAE2DBE2+DBF2-DAF2=AEAEDBEBE+DBFDBF-DAFAF
206 14 15 sqmuld φAE2=A2E2
207 18 15 sqmuld φBE2=B2E2
208 207 oveq2d φDBE2=DB2E2
209 18 sqcld φB2
210 17 209 41 mulassd φDB2E2=DB2E2
211 208 210 eqtr4d φDBE2=DB2E2
212 206 211 oveq12d φAE2DBE2=A2E2DB2E2
213 17 sqvald φD2=DD
214 18 19 sqmuld φBF2=B2F2
215 213 214 oveq12d φD2BF2=DDB2F2
216 17 20 sqmuld φDBF2=D2BF2
217 17 17 mulcld φDD
218 217 209 42 mulassd φDDB2F2=DDB2F2
219 215 216 218 3eqtr4d φDBF2=DDB2F2
220 14 19 sqmuld φAF2=A2F2
221 220 oveq2d φDAF2=DA2F2
222 14 sqcld φA2
223 17 222 42 mulassd φDA2F2=DA2F2
224 221 223 eqtr4d φDAF2=DA2F2
225 219 224 oveq12d φDBF2DAF2=DDB2F2DA2F2
226 212 225 oveq12d φAE2DBE2+DBF2-DAF2=A2E2DB2E2+DDB2F2-DA2F2
227 17 209 mulcld φDB2
228 222 227 41 subdird φA2DB2E2=A2E2DB2E2
229 10 oveq1d φA2DB2E2=CE2
230 228 229 eqtr3d φA2E2DB2E2=CE2
231 17 17 209 mulassd φDDB2=DDB2
232 231 oveq1d φDDB2DA2=DDB2DA2
233 232 oveq1d φDDB2DA2F2=DDB2DA2F2
234 217 209 mulcld φDDB2
235 17 222 mulcld φDA2
236 234 235 42 subdird φDDB2DA2F2=DDB2F2DA2F2
237 subdi DDB2A2DDB2A2=DDB2DA2
238 237 eqcomd DDB2A2DDB2DA2=DDB2A2
239 17 227 222 238 syl3anc φDDB2DA2=DDB2A2
240 negsubdi2 A2DB2A2DB2=DB2A2
241 240 eqcomd A2DB2DB2A2=A2DB2
242 222 227 241 syl2anc φDB2A2=A2DB2
243 10 negeqd φA2DB2=C
244 242 243 eqtrd φDB2A2=C
245 244 oveq2d φDDB2A2=DC
246 17 23 mulneg2d φDC=DC
247 239 245 246 3eqtrd φDDB2DA2=DC
248 247 oveq1d φDDB2DA2F2=DCF2
249 233 236 248 3eqtr3d φDDB2F2DA2F2=DCF2
250 230 249 oveq12d φA2E2DB2E2+DDB2F2-DA2F2=CE2+DCF2
251 17 23 mulcld φDC
252 251 42 mulneg1d φDCF2=DCF2
253 17 23 mulcomd φDC=CD
254 253 oveq1d φDCF2=CDF2
255 23 17 42 mulassd φCDF2=CDF2
256 254 255 eqtrd φDCF2=CDF2
257 256 negeqd φDCF2=CDF2
258 252 257 eqtrd φDCF2=CDF2
259 258 oveq2d φCE2+DCF2=CE2+CDF2
260 23 41 mulcld φCE2
261 23 43 mulcld φCDF2
262 260 261 negsubd φCE2+CDF2=CE2CDF2
263 11 oveq2d φCE2DF2=CC
264 subdi CE2DF2CE2DF2=CE2CDF2
265 264 eqcomd CE2DF2CE2CDF2=CE2DF2
266 23 41 43 265 syl3anc φCE2CDF2=CE2DF2
267 23 sqvald φC2=CC
268 263 266 267 3eqtr4d φCE2CDF2=C2
269 259 262 268 3eqtrd φCE2+DCF2=C2
270 226 250 269 3eqtrd φAE2DBE2+DBF2-DAF2=C2
271 196 205 270 3eqtr2d φAEAE+DBFDBF-DBEBE+DAFAF=C2
272 186 195 271 3eqtrd φAEAE+DBFDBF-AEDBF+AEDBF-DBEBE+DAFAF-DBEAF+DBEAF=C2
273 272 oveq1d φAEAE+DBFDBF-AEDBF+AEDBF-DBEBE+DAFAF-DBEAF+DBEAFC2=C2C2
274 145 148 dividd φC2C2=1
275 173 273 274 3eqtrd φAEDBFAEDBFDBEAFBEAFC2=1
276 154 158 275 3eqtr2d φAEDBFC2DBEAFC2=1
277 276 adantr φAEDBF=0AEDBFC2DBEAFC2=1
278 simpr φAEDBF=0AEDBF=0
279 278 fvoveq1d φAEDBF=0AEDBFC=0C
280 23 9 div0d φ0C=0
281 280 abs00bd φ0C=0
282 281 adantr φAEDBF=00C=0
283 279 282 eqtrd φAEDBF=0AEDBFC=0
284 283 sq0id φAEDBF=0AEDBFC2=0
285 284 oveq1d φAEDBF=0AEDBFC2DBEAFC2=0DBEAFC2
286 277 285 eqtr3d φAEDBF=01=0DBEAFC2
287 128 286 mtand φ¬AEDBF=0
288 287 neqned φAEDBF0
289 22 23 288 9 divne0d φAEDBFC0
290 nnabscl AEDBFCAEDBFC0AEDBFC
291 107 289 290 syl2anc φAEDBFC
292 115 23 9 absdivd φBEAFC=BEAFC
293 negsub BEAFBE+AF=BEAF
294 293 eqcomd BEAFBEAF=BE+AF
295 113 114 294 syl2anc φBEAF=BE+AF
296 295 oveq1d φBEAFmodC=BE+AFmodC
297 136 renegcld φAF
298 19 15 mulcomd φFE=EF
299 298 oveq1d φFEmodC=EFmodC
300 modmul1 BFEC+BmodC=FmodCBEmodC=FEmodC
301 32 33 38 37 13 300 syl221anc φBEmodC=FEmodC
302 modmul1 AEFC+AmodC=EmodCAFmodC=EFmodC
303 28 29 80 37 12 302 syl221anc φAFmodC=EFmodC
304 299 301 303 3eqtr4d φBEmodC=AFmodC
305 modadd1 BEAFAFC+BEmodC=AFmodCBE+AFmodC=AF+AFmodC
306 135 136 297 37 304 305 syl221anc φBE+AFmodC=AF+AFmodC
307 114 negidd φAF+AF=0
308 307 oveq1d φAF+AFmodC=0modC
309 296 306 308 3eqtrd φBEAFmodC=0modC
310 309 68 eqtrd φBEAFmodC=0
311 absmod0 BEAFC+BEAFmodC=0BEAFmodC=0
312 137 37 311 syl2anc φBEAFmodC=0BEAFmodC=0
313 310 312 mpbid φBEAFmodC=0
314 115 abscld φBEAF
315 mod0 BEAFC+BEAFmodC=0BEAFC
316 314 37 315 syl2anc φBEAFmodC=0BEAFC
317 313 316 mpbid φBEAFC
318 292 317 eqeltrd φBEAFC
319 absz BEAFCBEAFCBEAFC
320 138 319 syl φBEAFCBEAFC
321 318 320 mpbird φBEAFC
322 7 nnne0d φF0
323 6 nnne0d φE0
324 18 19 14 15 322 323 divmuleqd φBF=AEBE=AF
325 11 adantr φBF=AEE2DF2=C
326 325 eqcomd φBF=AEC=E2DF2
327 326 oveq2d φBF=AEBF2C=BF2E2DF2
328 18 19 322 divcld φBF
329 328 sqcld φBF2
330 329 adantr φBF=AEBF2
331 41 adantr φBF=AEE2
332 43 adantr φBF=AEDF2
333 330 331 332 subdid φBF=AEBF2E2DF2=BF2E2BF2DF2
334 oveq1 BF=AEBF2=AE2
335 334 oveq1d BF=AEBF2E2=AE2E2
336 335 adantl φBF=AEBF2E2=AE2E2
337 14 adantr φBF=AEA
338 15 adantr φBF=AEE
339 323 adantr φBF=AEE0
340 337 338 339 sqdivd φBF=AEAE2=A2E2
341 340 oveq1d φBF=AEAE2E2=A2E2E2
342 222 adantr φBF=AEA2
343 sqne0 EE20E0
344 15 343 syl φE20E0
345 323 344 mpbird φE20
346 345 adantr φBF=AEE20
347 342 331 346 divcan1d φBF=AEA2E2E2=A2
348 336 341 347 3eqtrd φBF=AEBF2E2=A2
349 17 adantr φBF=AED
350 42 adantr φBF=AEF2
351 330 349 350 mul12d φBF=AEBF2DF2=DBF2F2
352 18 adantr φBF=AEB
353 19 adantr φBF=AEF
354 322 adantr φBF=AEF0
355 352 353 354 sqdivd φBF=AEBF2=B2F2
356 355 oveq1d φBF=AEBF2F2=B2F2F2
357 356 oveq2d φBF=AEDBF2F2=DB2F2F2
358 209 adantr φBF=AEB2
359 sqne0 FF20F0
360 19 359 syl φF20F0
361 322 360 mpbird φF20
362 361 adantr φBF=AEF20
363 358 350 362 divcan1d φBF=AEB2F2F2=B2
364 363 oveq2d φBF=AEDB2F2F2=DB2
365 351 357 364 3eqtrd φBF=AEBF2DF2=DB2
366 348 365 oveq12d φBF=AEBF2E2BF2DF2=A2DB2
367 327 333 366 3eqtrd φBF=AEBF2C=A2DB2
368 10 eqcomd φC=A2DB2
369 368 adantr φBF=AEC=A2DB2
370 367 369 oveq12d φBF=AEBF2CC=A2DB2A2DB2
371 23 adantr φBF=AEC
372 9 adantr φBF=AEC0
373 330 371 372 divcan4d φBF=AEBF2CC=BF2
374 10 10 oveq12d φA2DB2A2DB2=CC
375 23 9 dividd φCC=1
376 374 375 eqtrd φA2DB2A2DB2=1
377 376 adantr φBF=AEA2DB2A2DB2=1
378 370 373 377 3eqtr3d φBF=AEBF2=1
379 32 33 322 redivcld φBF
380 2 nnnn0d φB0
381 380 nn0ge0d φ0B
382 7 nngt0d φ0<F
383 divge0 B0BF0<F0BF
384 32 381 33 382 383 syl22anc φ0BF
385 379 384 sqrtsqd φBF2=BF
386 385 eqcomd φBF=BF2
387 386 ad2antrr φBF=AEBF2=1BF=BF2
388 fveq2 BF2=1BF2=1
389 388 adantl φBF=AEBF2=1BF2=1
390 sqrt1 1=1
391 390 a1i φBF=AEBF2=11=1
392 387 389 391 3eqtrd φBF=AEBF2=1BF=1
393 392 ex φBF=AEBF2=1BF=1
394 simplr φBF=AEBF=1BF=AE
395 simpr φBF=AEBF=1BF=1
396 394 395 eqtr3d φBF=AEBF=1AE=1
397 396 oveq1d φBF=AEBF=1AEE=1E
398 14 15 323 divcan1d φAEE=A
399 398 ad2antrr φBF=AEBF=1AEE=A
400 15 mullidd φ1E=E
401 400 ad2antrr φBF=AEBF=11E=E
402 397 399 401 3eqtr3d φBF=AEBF=1A=E
403 395 oveq1d φBF=AEBF=1BFF=1F
404 18 19 322 divcan1d φBFF=B
405 404 ad2antrr φBF=AEBF=1BFF=B
406 19 mullidd φ1F=F
407 406 ad2antrr φBF=AEBF=11F=F
408 403 405 407 3eqtr3d φBF=AEBF=1B=F
409 402 408 jca φBF=AEBF=1A=EB=F
410 409 ex φBF=AEBF=1A=EB=F
411 393 410 syld φBF=AEBF2=1A=EB=F
412 378 411 mpd φBF=AEA=EB=F
413 412 ex φBF=AEA=EB=F
414 324 413 sylbird φBE=AFA=EB=F
415 8 414 mtod φ¬BE=AF
416 415 neqned φBEAF
417 113 114 416 subne0d φBEAF0
418 115 23 417 9 divne0d φBEAFC0
419 nnabscl BEAFCBEAFC0BEAFC
420 321 418 419 syl2anc φBEAFC
421 oveq1 a=AEDBFCa2=AEDBFC2
422 421 oveq1d a=AEDBFCa2Db2=AEDBFC2Db2
423 422 eqeq1d a=AEDBFCa2Db2=1AEDBFC2Db2=1
424 oveq1 b=BEAFCb2=BEAFC2
425 424 oveq2d b=BEAFCDb2=DBEAFC2
426 425 oveq2d b=BEAFCAEDBFC2Db2=AEDBFC2DBEAFC2
427 426 eqeq1d b=BEAFCAEDBFC2Db2=1AEDBFC2DBEAFC2=1
428 423 427 rspc2ev AEDBFCBEAFCAEDBFC2DBEAFC2=1aba2Db2=1
429 291 420 276 428 syl3anc φaba2Db2=1