| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pellexlem4 |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } ~~ NN ) | 
						
							| 2 |  | fzfi |  |-  ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) e. Fin | 
						
							| 3 |  | diffi |  |-  ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) e. Fin -> ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) e. Fin ) | 
						
							| 4 | 2 3 | mp1i |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) e. Fin ) | 
						
							| 5 |  | elopab |  |-  ( a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } <-> E. y E. z ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) | 
						
							| 6 |  | fveq2 |  |-  ( a = <. y , z >. -> ( 1st ` a ) = ( 1st ` <. y , z >. ) ) | 
						
							| 7 | 6 | oveq1d |  |-  ( a = <. y , z >. -> ( ( 1st ` a ) ^ 2 ) = ( ( 1st ` <. y , z >. ) ^ 2 ) ) | 
						
							| 8 |  | fveq2 |  |-  ( a = <. y , z >. -> ( 2nd ` a ) = ( 2nd ` <. y , z >. ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( a = <. y , z >. -> ( ( 2nd ` a ) ^ 2 ) = ( ( 2nd ` <. y , z >. ) ^ 2 ) ) | 
						
							| 10 | 9 | oveq2d |  |-  ( a = <. y , z >. -> ( D x. ( ( 2nd ` a ) ^ 2 ) ) = ( D x. ( ( 2nd ` <. y , z >. ) ^ 2 ) ) ) | 
						
							| 11 | 7 10 | oveq12d |  |-  ( a = <. y , z >. -> ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = ( ( ( 1st ` <. y , z >. ) ^ 2 ) - ( D x. ( ( 2nd ` <. y , z >. ) ^ 2 ) ) ) ) | 
						
							| 12 |  | vex |  |-  y e. _V | 
						
							| 13 |  | vex |  |-  z e. _V | 
						
							| 14 | 12 13 | op1st |  |-  ( 1st ` <. y , z >. ) = y | 
						
							| 15 | 14 | oveq1i |  |-  ( ( 1st ` <. y , z >. ) ^ 2 ) = ( y ^ 2 ) | 
						
							| 16 | 12 13 | op2nd |  |-  ( 2nd ` <. y , z >. ) = z | 
						
							| 17 | 16 | oveq1i |  |-  ( ( 2nd ` <. y , z >. ) ^ 2 ) = ( z ^ 2 ) | 
						
							| 18 | 17 | oveq2i |  |-  ( D x. ( ( 2nd ` <. y , z >. ) ^ 2 ) ) = ( D x. ( z ^ 2 ) ) | 
						
							| 19 | 15 18 | oveq12i |  |-  ( ( ( 1st ` <. y , z >. ) ^ 2 ) - ( D x. ( ( 2nd ` <. y , z >. ) ^ 2 ) ) ) = ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) | 
						
							| 20 | 11 19 | eqtrdi |  |-  ( a = <. y , z >. -> ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) | 
						
							| 21 | 20 | ad2antrl |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) | 
						
							| 22 |  | simprrl |  |-  ( ( D e. NN /\ ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( y e. NN /\ z e. NN ) ) | 
						
							| 23 |  | simpl |  |-  ( ( D e. NN /\ ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> D e. NN ) | 
						
							| 24 |  | simprr |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) | 
						
							| 25 | 24 | ad2antll |  |-  ( ( D e. NN /\ ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) | 
						
							| 26 |  | nnz |  |-  ( y e. NN -> y e. ZZ ) | 
						
							| 27 | 26 | ad2antrr |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> y e. ZZ ) | 
						
							| 28 |  | zsqcl |  |-  ( y e. ZZ -> ( y ^ 2 ) e. ZZ ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( y ^ 2 ) e. ZZ ) | 
						
							| 30 |  | nnz |  |-  ( D e. NN -> D e. ZZ ) | 
						
							| 31 | 30 | ad2antrl |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> D e. ZZ ) | 
						
							| 32 |  | simplr |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> z e. NN ) | 
						
							| 33 | 32 | nnzd |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> z e. ZZ ) | 
						
							| 34 |  | zsqcl |  |-  ( z e. ZZ -> ( z ^ 2 ) e. ZZ ) | 
						
							| 35 | 33 34 | syl |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( z ^ 2 ) e. ZZ ) | 
						
							| 36 | 31 35 | zmulcld |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( D x. ( z ^ 2 ) ) e. ZZ ) | 
						
							| 37 | 29 36 | zsubcld |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ZZ ) | 
						
							| 38 |  | 1re |  |-  1 e. RR | 
						
							| 39 |  | 2re |  |-  2 e. RR | 
						
							| 40 |  | nnre |  |-  ( D e. NN -> D e. RR ) | 
						
							| 41 | 40 | ad2antrl |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> D e. RR ) | 
						
							| 42 |  | nnnn0 |  |-  ( D e. NN -> D e. NN0 ) | 
						
							| 43 | 42 | ad2antrl |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> D e. NN0 ) | 
						
							| 44 | 43 | nn0ge0d |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> 0 <_ D ) | 
						
							| 45 | 41 44 | resqrtcld |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( sqrt ` D ) e. RR ) | 
						
							| 46 |  | remulcl |  |-  ( ( 2 e. RR /\ ( sqrt ` D ) e. RR ) -> ( 2 x. ( sqrt ` D ) ) e. RR ) | 
						
							| 47 | 39 45 46 | sylancr |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( 2 x. ( sqrt ` D ) ) e. RR ) | 
						
							| 48 |  | readdcl |  |-  ( ( 1 e. RR /\ ( 2 x. ( sqrt ` D ) ) e. RR ) -> ( 1 + ( 2 x. ( sqrt ` D ) ) ) e. RR ) | 
						
							| 49 | 38 47 48 | sylancr |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( 1 + ( 2 x. ( sqrt ` D ) ) ) e. RR ) | 
						
							| 50 | 49 | flcld |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. ZZ ) | 
						
							| 51 | 50 | znegcld |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. ZZ ) | 
						
							| 52 | 37 | zred |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. RR ) | 
						
							| 53 | 50 | zred |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. RR ) | 
						
							| 54 |  | nn0abscl |  |-  ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ZZ -> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) e. NN0 ) | 
						
							| 55 | 37 54 | syl |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) e. NN0 ) | 
						
							| 56 | 55 | nn0zd |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) e. ZZ ) | 
						
							| 57 | 56 | zred |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) e. RR ) | 
						
							| 58 |  | peano2re |  |-  ( ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. RR -> ( ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) + 1 ) e. RR ) | 
						
							| 59 | 53 58 | syl |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) + 1 ) e. RR ) | 
						
							| 60 |  | simprr |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) | 
						
							| 61 |  | flltp1 |  |-  ( ( 1 + ( 2 x. ( sqrt ` D ) ) ) e. RR -> ( 1 + ( 2 x. ( sqrt ` D ) ) ) < ( ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) + 1 ) ) | 
						
							| 62 | 49 61 | syl |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( 1 + ( 2 x. ( sqrt ` D ) ) ) < ( ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) + 1 ) ) | 
						
							| 63 | 57 49 59 60 62 | lttrd |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) + 1 ) ) | 
						
							| 64 |  | zleltp1 |  |-  ( ( ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) e. ZZ /\ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. ZZ ) -> ( ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) <_ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) <-> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) + 1 ) ) ) | 
						
							| 65 | 56 50 64 | syl2anc |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) <_ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) <-> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) + 1 ) ) ) | 
						
							| 66 | 63 65 | mpbird |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) <_ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) | 
						
							| 67 |  | absle |  |-  ( ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. RR /\ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. RR ) -> ( ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) <_ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) <-> ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) <_ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) <_ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) | 
						
							| 68 | 67 | biimpa |  |-  ( ( ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. RR /\ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. RR ) /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) <_ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) <_ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) <_ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) | 
						
							| 69 | 52 53 66 68 | syl21anc |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) <_ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) <_ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) | 
						
							| 70 |  | elfz |  |-  ( ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ZZ /\ -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. ZZ /\ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. ZZ ) -> ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) <-> ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) <_ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) <_ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) | 
						
							| 71 | 70 | biimpar |  |-  ( ( ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ZZ /\ -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. ZZ /\ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. ZZ ) /\ ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) <_ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) <_ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) | 
						
							| 72 | 37 51 50 69 71 | syl31anc |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) | 
						
							| 73 | 22 23 25 72 | syl12anc |  |-  ( ( D e. NN /\ ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) | 
						
							| 74 | 73 | adantlr |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) | 
						
							| 75 |  | simprl |  |-  ( ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 ) | 
						
							| 76 | 75 | ad2antll |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 ) | 
						
							| 77 |  | eldifsn |  |-  ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) <-> ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 ) ) | 
						
							| 78 | 74 76 77 | sylanbrc |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) ) | 
						
							| 79 | 21 78 | eqeltrd |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) ) | 
						
							| 80 | 79 | ex |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) -> ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) ) ) | 
						
							| 81 | 80 | exlimdvv |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( E. y E. z ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) -> ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) ) ) | 
						
							| 82 | 5 81 | biimtrid |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } -> ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) ) ) | 
						
							| 83 | 82 | imp |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } ) -> ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) ) | 
						
							| 84 | 1 4 83 | fiphp3d |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> E. x e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN ) | 
						
							| 85 |  | eldif |  |-  ( x e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) <-> ( x e. ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) /\ -. x e. { 0 } ) ) | 
						
							| 86 |  | elfzelz |  |-  ( x e. ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> x e. ZZ ) | 
						
							| 87 |  | simp2 |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ x e. ZZ /\ -. x e. { 0 } ) -> x e. ZZ ) | 
						
							| 88 |  | velsn |  |-  ( x e. { 0 } <-> x = 0 ) | 
						
							| 89 | 88 | biimpri |  |-  ( x = 0 -> x e. { 0 } ) | 
						
							| 90 | 89 | necon3bi |  |-  ( -. x e. { 0 } -> x =/= 0 ) | 
						
							| 91 | 90 | 3ad2ant3 |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ x e. ZZ /\ -. x e. { 0 } ) -> x =/= 0 ) | 
						
							| 92 | 87 91 | jca |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ x e. ZZ /\ -. x e. { 0 } ) -> ( x e. ZZ /\ x =/= 0 ) ) | 
						
							| 93 | 92 | 3exp |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( x e. ZZ -> ( -. x e. { 0 } -> ( x e. ZZ /\ x =/= 0 ) ) ) ) | 
						
							| 94 | 86 93 | syl5 |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( x e. ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( -. x e. { 0 } -> ( x e. ZZ /\ x =/= 0 ) ) ) ) | 
						
							| 95 | 94 | impd |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( ( x e. ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) /\ -. x e. { 0 } ) -> ( x e. ZZ /\ x =/= 0 ) ) ) | 
						
							| 96 | 85 95 | biimtrid |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( x e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) -> ( x e. ZZ /\ x =/= 0 ) ) ) | 
						
							| 97 |  | simp2l |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) /\ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN ) -> x e. ZZ ) | 
						
							| 98 |  | simp2r |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) /\ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN ) -> x =/= 0 ) | 
						
							| 99 |  | nnex |  |-  NN e. _V | 
						
							| 100 | 99 99 | xpex |  |-  ( NN X. NN ) e. _V | 
						
							| 101 |  | opabssxp |  |-  { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } C_ ( NN X. NN ) | 
						
							| 102 |  | ssdomg |  |-  ( ( NN X. NN ) e. _V -> ( { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } C_ ( NN X. NN ) -> { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~<_ ( NN X. NN ) ) ) | 
						
							| 103 | 100 101 102 | mp2 |  |-  { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~<_ ( NN X. NN ) | 
						
							| 104 |  | xpnnen |  |-  ( NN X. NN ) ~~ NN | 
						
							| 105 |  | domentr |  |-  ( ( { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~<_ ( NN X. NN ) /\ ( NN X. NN ) ~~ NN ) -> { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~<_ NN ) | 
						
							| 106 | 103 104 105 | mp2an |  |-  { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~<_ NN | 
						
							| 107 |  | ensym |  |-  ( { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN -> NN ~~ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ) | 
						
							| 108 | 107 | 3ad2ant3 |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) /\ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN ) -> NN ~~ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ) | 
						
							| 109 | 100 101 | ssexi |  |-  { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } e. _V | 
						
							| 110 |  | fveq2 |  |-  ( a = b -> ( 1st ` a ) = ( 1st ` b ) ) | 
						
							| 111 | 110 | oveq1d |  |-  ( a = b -> ( ( 1st ` a ) ^ 2 ) = ( ( 1st ` b ) ^ 2 ) ) | 
						
							| 112 |  | fveq2 |  |-  ( a = b -> ( 2nd ` a ) = ( 2nd ` b ) ) | 
						
							| 113 | 112 | oveq1d |  |-  ( a = b -> ( ( 2nd ` a ) ^ 2 ) = ( ( 2nd ` b ) ^ 2 ) ) | 
						
							| 114 | 113 | oveq2d |  |-  ( a = b -> ( D x. ( ( 2nd ` a ) ^ 2 ) ) = ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) | 
						
							| 115 | 111 114 | oveq12d |  |-  ( a = b -> ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) ) | 
						
							| 116 | 115 | eqeq1d |  |-  ( a = b -> ( ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x <-> ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) ) | 
						
							| 117 | 116 | elrab |  |-  ( b e. { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } <-> ( b e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) ) | 
						
							| 118 |  | simprl |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) /\ ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> b = <. y , z >. ) | 
						
							| 119 |  | simprrl |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) /\ ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( y e. NN /\ z e. NN ) ) | 
						
							| 120 |  | fveq2 |  |-  ( b = <. y , z >. -> ( 1st ` b ) = ( 1st ` <. y , z >. ) ) | 
						
							| 121 | 120 | oveq1d |  |-  ( b = <. y , z >. -> ( ( 1st ` b ) ^ 2 ) = ( ( 1st ` <. y , z >. ) ^ 2 ) ) | 
						
							| 122 |  | fveq2 |  |-  ( b = <. y , z >. -> ( 2nd ` b ) = ( 2nd ` <. y , z >. ) ) | 
						
							| 123 | 122 | oveq1d |  |-  ( b = <. y , z >. -> ( ( 2nd ` b ) ^ 2 ) = ( ( 2nd ` <. y , z >. ) ^ 2 ) ) | 
						
							| 124 | 123 | oveq2d |  |-  ( b = <. y , z >. -> ( D x. ( ( 2nd ` b ) ^ 2 ) ) = ( D x. ( ( 2nd ` <. y , z >. ) ^ 2 ) ) ) | 
						
							| 125 | 121 124 | oveq12d |  |-  ( b = <. y , z >. -> ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = ( ( ( 1st ` <. y , z >. ) ^ 2 ) - ( D x. ( ( 2nd ` <. y , z >. ) ^ 2 ) ) ) ) | 
						
							| 126 | 125 19 | eqtr2di |  |-  ( b = <. y , z >. -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) ) | 
						
							| 127 | 126 | ad2antrl |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) /\ ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) ) | 
						
							| 128 |  | simplr |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) /\ ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) | 
						
							| 129 | 127 128 | eqtrd |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) /\ ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) | 
						
							| 130 | 118 119 129 | jca32 |  |-  ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) /\ ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) ) ) | 
						
							| 131 | 130 | ex |  |-  ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) -> ( ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) -> ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) ) ) ) | 
						
							| 132 | 131 | 2eximdv |  |-  ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) -> ( E. y E. z ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) -> E. y E. z ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) ) ) ) | 
						
							| 133 |  | elopab |  |-  ( b e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } <-> E. y E. z ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) | 
						
							| 134 |  | elopab |  |-  ( b e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } <-> E. y E. z ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) ) ) | 
						
							| 135 | 132 133 134 | 3imtr4g |  |-  ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) -> ( b e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } -> b e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) ) | 
						
							| 136 | 135 | expimpd |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( ( ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x /\ b e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } ) -> b e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) ) | 
						
							| 137 | 136 | ancomsd |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( ( b e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) -> b e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) ) | 
						
							| 138 | 117 137 | biimtrid |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( b e. { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } -> b e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) ) | 
						
							| 139 | 138 | ssrdv |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) -> { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } C_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) | 
						
							| 140 | 139 | 3adant3 |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) /\ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN ) -> { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } C_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) | 
						
							| 141 |  | ssdomg |  |-  ( { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } e. _V -> ( { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } C_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } -> { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~<_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) ) | 
						
							| 142 | 109 140 141 | mpsyl |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) /\ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN ) -> { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~<_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) | 
						
							| 143 |  | endomtr |  |-  ( ( NN ~~ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } /\ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~<_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) -> NN ~<_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) | 
						
							| 144 | 108 142 143 | syl2anc |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) /\ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN ) -> NN ~<_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) | 
						
							| 145 |  | sbth |  |-  ( ( { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~<_ NN /\ NN ~<_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) -> { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~~ NN ) | 
						
							| 146 | 106 144 145 | sylancr |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) /\ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN ) -> { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~~ NN ) | 
						
							| 147 | 97 98 146 | jca32 |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) /\ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN ) -> ( x e. ZZ /\ ( x =/= 0 /\ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~~ NN ) ) ) | 
						
							| 148 | 147 | 3exp |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( ( x e. ZZ /\ x =/= 0 ) -> ( { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN -> ( x e. ZZ /\ ( x =/= 0 /\ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~~ NN ) ) ) ) ) | 
						
							| 149 | 96 148 | syld |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( x e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) -> ( { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN -> ( x e. ZZ /\ ( x =/= 0 /\ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~~ NN ) ) ) ) ) | 
						
							| 150 | 149 | impd |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( ( x e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) /\ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN ) -> ( x e. ZZ /\ ( x =/= 0 /\ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~~ NN ) ) ) ) | 
						
							| 151 | 150 | reximdv2 |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( E. x e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN -> E. x e. ZZ ( x =/= 0 /\ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~~ NN ) ) ) | 
						
							| 152 | 84 151 | mpd |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> E. x e. ZZ ( x =/= 0 /\ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~~ NN ) ) |