| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( a = D -> ( Pell14QR ` a ) = ( Pell14QR ` D ) ) | 
						
							| 2 |  | rabeq |  |-  ( ( Pell14QR ` a ) = ( Pell14QR ` D ) -> { x e. ( Pell14QR ` a ) | 1 < x } = { x e. ( Pell14QR ` D ) | 1 < x } ) | 
						
							| 3 | 1 2 | syl |  |-  ( a = D -> { x e. ( Pell14QR ` a ) | 1 < x } = { x e. ( Pell14QR ` D ) | 1 < x } ) | 
						
							| 4 | 3 | infeq1d |  |-  ( a = D -> inf ( { x e. ( Pell14QR ` a ) | 1 < x } , RR , < ) = inf ( { x e. ( Pell14QR ` D ) | 1 < x } , RR , < ) ) | 
						
							| 5 |  | df-pellfund |  |-  PellFund = ( a e. ( NN \ []NN ) |-> inf ( { x e. ( Pell14QR ` a ) | 1 < x } , RR , < ) ) | 
						
							| 6 |  | ltso |  |-  < Or RR | 
						
							| 7 | 6 | infex |  |-  inf ( { x e. ( Pell14QR ` D ) | 1 < x } , RR , < ) e. _V | 
						
							| 8 | 4 5 7 | fvmpt |  |-  ( D e. ( NN \ []NN ) -> ( PellFund ` D ) = inf ( { x e. ( Pell14QR ` D ) | 1 < x } , RR , < ) ) |