Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( a = D -> ( Pell14QR ` a ) = ( Pell14QR ` D ) ) |
2 |
|
rabeq |
|- ( ( Pell14QR ` a ) = ( Pell14QR ` D ) -> { x e. ( Pell14QR ` a ) | 1 < x } = { x e. ( Pell14QR ` D ) | 1 < x } ) |
3 |
1 2
|
syl |
|- ( a = D -> { x e. ( Pell14QR ` a ) | 1 < x } = { x e. ( Pell14QR ` D ) | 1 < x } ) |
4 |
3
|
infeq1d |
|- ( a = D -> inf ( { x e. ( Pell14QR ` a ) | 1 < x } , RR , < ) = inf ( { x e. ( Pell14QR ` D ) | 1 < x } , RR , < ) ) |
5 |
|
df-pellfund |
|- PellFund = ( a e. ( NN \ []NN ) |-> inf ( { x e. ( Pell14QR ` a ) | 1 < x } , RR , < ) ) |
6 |
|
ltso |
|- < Or RR |
7 |
6
|
infex |
|- inf ( { x e. ( Pell14QR ` D ) | 1 < x } , RR , < ) e. _V |
8 |
4 5 7
|
fvmpt |
|- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) = inf ( { x e. ( Pell14QR ` D ) | 1 < x } , RR , < ) ) |