| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑎  =  𝐷  →  ( Pell14QR ‘ 𝑎 )  =  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 2 |  | rabeq | ⊢ ( ( Pell14QR ‘ 𝑎 )  =  ( Pell14QR ‘ 𝐷 )  →  { 𝑥  ∈  ( Pell14QR ‘ 𝑎 )  ∣  1  <  𝑥 }  =  { 𝑥  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑥 } ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑎  =  𝐷  →  { 𝑥  ∈  ( Pell14QR ‘ 𝑎 )  ∣  1  <  𝑥 }  =  { 𝑥  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑥 } ) | 
						
							| 4 | 3 | infeq1d | ⊢ ( 𝑎  =  𝐷  →  inf ( { 𝑥  ∈  ( Pell14QR ‘ 𝑎 )  ∣  1  <  𝑥 } ,  ℝ ,   <  )  =  inf ( { 𝑥  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑥 } ,  ℝ ,   <  ) ) | 
						
							| 5 |  | df-pellfund | ⊢ PellFund  =  ( 𝑎  ∈  ( ℕ  ∖  ◻NN )  ↦  inf ( { 𝑥  ∈  ( Pell14QR ‘ 𝑎 )  ∣  1  <  𝑥 } ,  ℝ ,   <  ) ) | 
						
							| 6 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 7 | 6 | infex | ⊢ inf ( { 𝑥  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑥 } ,  ℝ ,   <  )  ∈  V | 
						
							| 8 | 4 5 7 | fvmpt | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( PellFund ‘ 𝐷 )  =  inf ( { 𝑥  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑥 } ,  ℝ ,   <  ) ) |