| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pellfundval |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) = inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) ) |
| 2 |
|
ssrab2 |
⊢ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ⊆ ( Pell14QR ‘ 𝐷 ) |
| 3 |
|
pell14qrre |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝑎 ∈ ℝ ) |
| 4 |
3
|
ex |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) → 𝑎 ∈ ℝ ) ) |
| 5 |
4
|
ssrdv |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell14QR ‘ 𝐷 ) ⊆ ℝ ) |
| 6 |
2 5
|
sstrid |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ⊆ ℝ ) |
| 7 |
|
pell1qrss14 |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) ) |
| 8 |
|
pellqrex |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ∃ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) 1 < 𝑎 ) |
| 9 |
|
ssrexv |
⊢ ( ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) → ( ∃ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) 1 < 𝑎 → ∃ 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) 1 < 𝑎 ) ) |
| 10 |
7 8 9
|
sylc |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ∃ 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) 1 < 𝑎 ) |
| 11 |
|
rabn0 |
⊢ ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ≠ ∅ ↔ ∃ 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) 1 < 𝑎 ) |
| 12 |
10 11
|
sylibr |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ≠ ∅ ) |
| 13 |
|
1re |
⊢ 1 ∈ ℝ |
| 14 |
|
breq2 |
⊢ ( 𝑎 = 𝑐 → ( 1 < 𝑎 ↔ 1 < 𝑐 ) ) |
| 15 |
14
|
elrab |
⊢ ( 𝑐 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ↔ ( 𝑐 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑐 ) ) |
| 16 |
|
pell14qrre |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑐 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝑐 ∈ ℝ ) |
| 17 |
|
ltle |
⊢ ( ( 1 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( 1 < 𝑐 → 1 ≤ 𝑐 ) ) |
| 18 |
13 16 17
|
sylancr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑐 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 1 < 𝑐 → 1 ≤ 𝑐 ) ) |
| 19 |
18
|
expimpd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 𝑐 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝑐 ) → 1 ≤ 𝑐 ) ) |
| 20 |
15 19
|
biimtrid |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑐 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } → 1 ≤ 𝑐 ) ) |
| 21 |
20
|
ralrimiv |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ∀ 𝑐 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } 1 ≤ 𝑐 ) |
| 22 |
|
breq1 |
⊢ ( 𝑏 = 1 → ( 𝑏 ≤ 𝑐 ↔ 1 ≤ 𝑐 ) ) |
| 23 |
22
|
ralbidv |
⊢ ( 𝑏 = 1 → ( ∀ 𝑐 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } 𝑏 ≤ 𝑐 ↔ ∀ 𝑐 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } 1 ≤ 𝑐 ) ) |
| 24 |
23
|
rspcev |
⊢ ( ( 1 ∈ ℝ ∧ ∀ 𝑐 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } 1 ≤ 𝑐 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑐 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } 𝑏 ≤ 𝑐 ) |
| 25 |
13 21 24
|
sylancr |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ∃ 𝑏 ∈ ℝ ∀ 𝑐 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } 𝑏 ≤ 𝑐 ) |
| 26 |
|
infrecl |
⊢ ( ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ⊆ ℝ ∧ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } ≠ ∅ ∧ ∃ 𝑏 ∈ ℝ ∀ 𝑐 ∈ { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } 𝑏 ≤ 𝑐 ) → inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) ∈ ℝ ) |
| 27 |
6 12 25 26
|
syl3anc |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → inf ( { 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∣ 1 < 𝑎 } , ℝ , < ) ∈ ℝ ) |
| 28 |
1 27
|
eqeltrd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ℝ ) |