| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssrab2 | ⊢ { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  ⊆  ( Pell14QR ‘ 𝐷 ) | 
						
							| 2 |  | pell14qrre | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝑎  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝑎  ∈  ℝ ) | 
						
							| 3 | 2 | ex | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  →  𝑎  ∈  ℝ ) ) | 
						
							| 4 | 3 | ssrdv | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( Pell14QR ‘ 𝐷 )  ⊆  ℝ ) | 
						
							| 5 | 1 4 | sstrid | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  ⊆  ℝ ) | 
						
							| 6 |  | pell1qrss14 | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( Pell1QR ‘ 𝐷 )  ⊆  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 7 |  | pellqrex | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ∃ 𝑎  ∈  ( Pell1QR ‘ 𝐷 ) 1  <  𝑎 ) | 
						
							| 8 |  | ssrexv | ⊢ ( ( Pell1QR ‘ 𝐷 )  ⊆  ( Pell14QR ‘ 𝐷 )  →  ( ∃ 𝑎  ∈  ( Pell1QR ‘ 𝐷 ) 1  <  𝑎  →  ∃ 𝑎  ∈  ( Pell14QR ‘ 𝐷 ) 1  <  𝑎 ) ) | 
						
							| 9 | 6 7 8 | sylc | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ∃ 𝑎  ∈  ( Pell14QR ‘ 𝐷 ) 1  <  𝑎 ) | 
						
							| 10 |  | rabn0 | ⊢ ( { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  ≠  ∅  ↔  ∃ 𝑎  ∈  ( Pell14QR ‘ 𝐷 ) 1  <  𝑎 ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  ≠  ∅ ) | 
						
							| 12 |  | eldifi | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  𝐷  ∈  ℕ ) | 
						
							| 13 | 12 | peano2nnd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐷  +  1 )  ∈  ℕ ) | 
						
							| 14 | 13 | nnrpd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐷  +  1 )  ∈  ℝ+ ) | 
						
							| 15 | 14 | rpsqrtcld | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( √ ‘ ( 𝐷  +  1 ) )  ∈  ℝ+ ) | 
						
							| 16 | 15 | rpred | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( √ ‘ ( 𝐷  +  1 ) )  ∈  ℝ ) | 
						
							| 17 | 12 | nnrpd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  𝐷  ∈  ℝ+ ) | 
						
							| 18 | 17 | rpsqrtcld | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( √ ‘ 𝐷 )  ∈  ℝ+ ) | 
						
							| 19 | 18 | rpred | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( √ ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 20 | 16 19 | readdcld | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ∈  ℝ ) | 
						
							| 21 |  | breq2 | ⊢ ( 𝑎  =  𝑏  →  ( 1  <  𝑎  ↔  1  <  𝑏 ) ) | 
						
							| 22 | 21 | elrab | ⊢ ( 𝑏  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  ↔  ( 𝑏  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝑏 ) ) | 
						
							| 23 |  | pell14qrgap | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝑏  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝑏 )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  𝑏 ) | 
						
							| 24 | 23 | 3expib | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( 𝑏  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝑏 )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  𝑏 ) ) | 
						
							| 25 | 22 24 | biimtrid | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝑏  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  𝑏 ) ) | 
						
							| 26 | 25 | ralrimiv | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ∀ 𝑏  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  𝑏 ) | 
						
							| 27 |  | infmrgelbi | ⊢ ( ( ( { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  ⊆  ℝ  ∧  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 }  ≠  ∅  ∧  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ∈  ℝ )  ∧  ∀ 𝑏  ∈  { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  𝑏 )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  inf ( { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } ,  ℝ ,   <  ) ) | 
						
							| 28 | 5 11 20 26 27 | syl31anc | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  inf ( { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } ,  ℝ ,   <  ) ) | 
						
							| 29 |  | pellfundval | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( PellFund ‘ 𝐷 )  =  inf ( { 𝑎  ∈  ( Pell14QR ‘ 𝐷 )  ∣  1  <  𝑎 } ,  ℝ ,   <  ) ) | 
						
							| 30 | 28 29 | breqtrrd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  ( PellFund ‘ 𝐷 ) ) |