| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1red |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 ∈ ℝ ) |
| 2 |
|
eldifi |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 𝐷 ∈ ℕ ) |
| 3 |
2
|
peano2nnd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐷 + 1 ) ∈ ℕ ) |
| 4 |
3
|
nnrpd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐷 + 1 ) ∈ ℝ+ ) |
| 5 |
4
|
rpsqrtcld |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( √ ‘ ( 𝐷 + 1 ) ) ∈ ℝ+ ) |
| 6 |
5
|
rpred |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( √ ‘ ( 𝐷 + 1 ) ) ∈ ℝ ) |
| 7 |
2
|
nnrpd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 𝐷 ∈ ℝ+ ) |
| 8 |
7
|
rpsqrtcld |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( √ ‘ 𝐷 ) ∈ ℝ+ ) |
| 9 |
8
|
rpred |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( √ ‘ 𝐷 ) ∈ ℝ ) |
| 10 |
6 9
|
readdcld |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ∈ ℝ ) |
| 11 |
|
pellfundre |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ℝ ) |
| 12 |
|
sqrt1 |
⊢ ( √ ‘ 1 ) = 1 |
| 13 |
12 1
|
eqeltrid |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( √ ‘ 1 ) ∈ ℝ ) |
| 14 |
13 13
|
readdcld |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( √ ‘ 1 ) + ( √ ‘ 1 ) ) ∈ ℝ ) |
| 15 |
|
1lt2 |
⊢ 1 < 2 |
| 16 |
12 12
|
oveq12i |
⊢ ( ( √ ‘ 1 ) + ( √ ‘ 1 ) ) = ( 1 + 1 ) |
| 17 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 18 |
16 17
|
eqtri |
⊢ ( ( √ ‘ 1 ) + ( √ ‘ 1 ) ) = 2 |
| 19 |
15 18
|
breqtrri |
⊢ 1 < ( ( √ ‘ 1 ) + ( √ ‘ 1 ) ) |
| 20 |
19
|
a1i |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 < ( ( √ ‘ 1 ) + ( √ ‘ 1 ) ) ) |
| 21 |
3
|
nnge1d |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 ≤ ( 𝐷 + 1 ) ) |
| 22 |
|
0le1 |
⊢ 0 ≤ 1 |
| 23 |
22
|
a1i |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 0 ≤ 1 ) |
| 24 |
2
|
nnred |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 𝐷 ∈ ℝ ) |
| 25 |
|
peano2re |
⊢ ( 𝐷 ∈ ℝ → ( 𝐷 + 1 ) ∈ ℝ ) |
| 26 |
24 25
|
syl |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐷 + 1 ) ∈ ℝ ) |
| 27 |
3
|
nnnn0d |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐷 + 1 ) ∈ ℕ0 ) |
| 28 |
27
|
nn0ge0d |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 0 ≤ ( 𝐷 + 1 ) ) |
| 29 |
1 23 26 28
|
sqrtled |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 1 ≤ ( 𝐷 + 1 ) ↔ ( √ ‘ 1 ) ≤ ( √ ‘ ( 𝐷 + 1 ) ) ) ) |
| 30 |
21 29
|
mpbid |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( √ ‘ 1 ) ≤ ( √ ‘ ( 𝐷 + 1 ) ) ) |
| 31 |
2
|
nnge1d |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 ≤ 𝐷 ) |
| 32 |
2
|
nnnn0d |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 𝐷 ∈ ℕ0 ) |
| 33 |
32
|
nn0ge0d |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 0 ≤ 𝐷 ) |
| 34 |
1 23 24 33
|
sqrtled |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 1 ≤ 𝐷 ↔ ( √ ‘ 1 ) ≤ ( √ ‘ 𝐷 ) ) ) |
| 35 |
31 34
|
mpbid |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( √ ‘ 1 ) ≤ ( √ ‘ 𝐷 ) ) |
| 36 |
13 13 6 9 30 35
|
le2addd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( √ ‘ 1 ) + ( √ ‘ 1 ) ) ≤ ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ) |
| 37 |
1 14 10 20 36
|
ltletrd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 < ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ) |
| 38 |
|
pellfundge |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ≤ ( PellFund ‘ 𝐷 ) ) |
| 39 |
1 10 11 37 38
|
ltletrd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 < ( PellFund ‘ 𝐷 ) ) |