| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifi | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  𝐷  ∈  ℕ ) | 
						
							| 2 |  | eldifn | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ¬  𝐷  ∈  ◻NN ) | 
						
							| 3 | 1 | anim1i | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( √ ‘ 𝐷 )  ∈  ℚ )  →  ( 𝐷  ∈  ℕ  ∧  ( √ ‘ 𝐷 )  ∈  ℚ ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑎  =  𝐷  →  ( √ ‘ 𝑎 )  =  ( √ ‘ 𝐷 ) ) | 
						
							| 5 | 4 | eleq1d | ⊢ ( 𝑎  =  𝐷  →  ( ( √ ‘ 𝑎 )  ∈  ℚ  ↔  ( √ ‘ 𝐷 )  ∈  ℚ ) ) | 
						
							| 6 |  | df-squarenn | ⊢ ◻NN  =  { 𝑎  ∈  ℕ  ∣  ( √ ‘ 𝑎 )  ∈  ℚ } | 
						
							| 7 | 5 6 | elrab2 | ⊢ ( 𝐷  ∈  ◻NN  ↔  ( 𝐷  ∈  ℕ  ∧  ( √ ‘ 𝐷 )  ∈  ℚ ) ) | 
						
							| 8 | 3 7 | sylibr | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( √ ‘ 𝐷 )  ∈  ℚ )  →  𝐷  ∈  ◻NN ) | 
						
							| 9 | 2 8 | mtand | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ¬  ( √ ‘ 𝐷 )  ∈  ℚ ) | 
						
							| 10 |  | pellex | ⊢ ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  →  ∃ 𝑐  ∈  ℕ ∃ 𝑑  ∈  ℕ ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 ) | 
						
							| 11 | 1 9 10 | syl2anc | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ∃ 𝑐  ∈  ℕ ∃ 𝑑  ∈  ℕ ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 ) | 
						
							| 12 |  | simpll | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 )  →  𝐷  ∈  ( ℕ  ∖  ◻NN ) ) | 
						
							| 13 |  | nnnn0 | ⊢ ( 𝑐  ∈  ℕ  →  𝑐  ∈  ℕ0 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ )  →  𝑐  ∈  ℕ0 ) | 
						
							| 15 | 14 | ad2antlr | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 )  →  𝑐  ∈  ℕ0 ) | 
						
							| 16 |  | nnnn0 | ⊢ ( 𝑑  ∈  ℕ  →  𝑑  ∈  ℕ0 ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ )  →  𝑑  ∈  ℕ0 ) | 
						
							| 18 | 17 | ad2antlr | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 )  →  𝑑  ∈  ℕ0 ) | 
						
							| 19 |  | simpr | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 )  →  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 ) | 
						
							| 20 |  | pellqrexplicit | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝑐  ∈  ℕ0  ∧  𝑑  ∈  ℕ0 )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 )  →  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∈  ( Pell1QR ‘ 𝐷 ) ) | 
						
							| 21 | 12 15 18 19 20 | syl31anc | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 )  →  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∈  ( Pell1QR ‘ 𝐷 ) ) | 
						
							| 22 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 23 | 22 | a1i | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  1  ∈  ℝ ) | 
						
							| 24 | 22 22 | readdcli | ⊢ ( 1  +  1 )  ∈  ℝ | 
						
							| 25 | 24 | a1i | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  ( 1  +  1 )  ∈  ℝ ) | 
						
							| 26 |  | nnre | ⊢ ( 𝑐  ∈  ℕ  →  𝑐  ∈  ℝ ) | 
						
							| 27 | 26 | ad2antrl | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  𝑐  ∈  ℝ ) | 
						
							| 28 | 1 | adantr | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  𝐷  ∈  ℕ ) | 
						
							| 29 | 28 | nnrpd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  𝐷  ∈  ℝ+ ) | 
						
							| 30 | 29 | rpsqrtcld | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  ( √ ‘ 𝐷 )  ∈  ℝ+ ) | 
						
							| 31 | 30 | rpred | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  ( √ ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 32 |  | nnre | ⊢ ( 𝑑  ∈  ℕ  →  𝑑  ∈  ℝ ) | 
						
							| 33 | 32 | ad2antll | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  𝑑  ∈  ℝ ) | 
						
							| 34 | 31 33 | remulcld | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  ( ( √ ‘ 𝐷 )  ·  𝑑 )  ∈  ℝ ) | 
						
							| 35 | 27 34 | readdcld | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∈  ℝ ) | 
						
							| 36 | 22 | ltp1i | ⊢ 1  <  ( 1  +  1 ) | 
						
							| 37 | 36 | a1i | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  1  <  ( 1  +  1 ) ) | 
						
							| 38 |  | nnge1 | ⊢ ( 𝑐  ∈  ℕ  →  1  ≤  𝑐 ) | 
						
							| 39 | 38 | ad2antrl | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  1  ≤  𝑐 ) | 
						
							| 40 |  | 1t1e1 | ⊢ ( 1  ·  1 )  =  1 | 
						
							| 41 |  | nnge1 | ⊢ ( 𝐷  ∈  ℕ  →  1  ≤  𝐷 ) | 
						
							| 42 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 43 | 42 | a1i | ⊢ ( 𝐷  ∈  ℕ  →  ( 1 ↑ 2 )  =  1 ) | 
						
							| 44 |  | nncn | ⊢ ( 𝐷  ∈  ℕ  →  𝐷  ∈  ℂ ) | 
						
							| 45 | 44 | sqsqrtd | ⊢ ( 𝐷  ∈  ℕ  →  ( ( √ ‘ 𝐷 ) ↑ 2 )  =  𝐷 ) | 
						
							| 46 | 41 43 45 | 3brtr4d | ⊢ ( 𝐷  ∈  ℕ  →  ( 1 ↑ 2 )  ≤  ( ( √ ‘ 𝐷 ) ↑ 2 ) ) | 
						
							| 47 | 22 | a1i | ⊢ ( 𝐷  ∈  ℕ  →  1  ∈  ℝ ) | 
						
							| 48 |  | nnrp | ⊢ ( 𝐷  ∈  ℕ  →  𝐷  ∈  ℝ+ ) | 
						
							| 49 | 48 | rpsqrtcld | ⊢ ( 𝐷  ∈  ℕ  →  ( √ ‘ 𝐷 )  ∈  ℝ+ ) | 
						
							| 50 | 49 | rpred | ⊢ ( 𝐷  ∈  ℕ  →  ( √ ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 51 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 52 | 51 | a1i | ⊢ ( 𝐷  ∈  ℕ  →  0  ≤  1 ) | 
						
							| 53 | 49 | rpge0d | ⊢ ( 𝐷  ∈  ℕ  →  0  ≤  ( √ ‘ 𝐷 ) ) | 
						
							| 54 | 47 50 52 53 | le2sqd | ⊢ ( 𝐷  ∈  ℕ  →  ( 1  ≤  ( √ ‘ 𝐷 )  ↔  ( 1 ↑ 2 )  ≤  ( ( √ ‘ 𝐷 ) ↑ 2 ) ) ) | 
						
							| 55 | 46 54 | mpbird | ⊢ ( 𝐷  ∈  ℕ  →  1  ≤  ( √ ‘ 𝐷 ) ) | 
						
							| 56 | 28 55 | syl | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  1  ≤  ( √ ‘ 𝐷 ) ) | 
						
							| 57 |  | nnge1 | ⊢ ( 𝑑  ∈  ℕ  →  1  ≤  𝑑 ) | 
						
							| 58 | 57 | ad2antll | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  1  ≤  𝑑 ) | 
						
							| 59 | 23 51 | jctir | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  ( 1  ∈  ℝ  ∧  0  ≤  1 ) ) | 
						
							| 60 |  | lemul12a | ⊢ ( ( ( ( 1  ∈  ℝ  ∧  0  ≤  1 )  ∧  ( √ ‘ 𝐷 )  ∈  ℝ )  ∧  ( ( 1  ∈  ℝ  ∧  0  ≤  1 )  ∧  𝑑  ∈  ℝ ) )  →  ( ( 1  ≤  ( √ ‘ 𝐷 )  ∧  1  ≤  𝑑 )  →  ( 1  ·  1 )  ≤  ( ( √ ‘ 𝐷 )  ·  𝑑 ) ) ) | 
						
							| 61 | 59 31 59 33 60 | syl22anc | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  ( ( 1  ≤  ( √ ‘ 𝐷 )  ∧  1  ≤  𝑑 )  →  ( 1  ·  1 )  ≤  ( ( √ ‘ 𝐷 )  ·  𝑑 ) ) ) | 
						
							| 62 | 56 58 61 | mp2and | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  ( 1  ·  1 )  ≤  ( ( √ ‘ 𝐷 )  ·  𝑑 ) ) | 
						
							| 63 | 40 62 | eqbrtrrid | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  1  ≤  ( ( √ ‘ 𝐷 )  ·  𝑑 ) ) | 
						
							| 64 | 23 23 27 34 39 63 | le2addd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  ( 1  +  1 )  ≤  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) ) ) | 
						
							| 65 | 23 25 35 37 64 | ltletrd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  1  <  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 )  →  1  <  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) ) ) | 
						
							| 67 |  | breq2 | ⊢ ( 𝑥  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  →  ( 1  <  𝑥  ↔  1  <  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) ) ) ) | 
						
							| 68 | 67 | rspcev | ⊢ ( ( ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∈  ( Pell1QR ‘ 𝐷 )  ∧  1  <  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) ) )  →  ∃ 𝑥  ∈  ( Pell1QR ‘ 𝐷 ) 1  <  𝑥 ) | 
						
							| 69 | 21 66 68 | syl2anc | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 )  →  ∃ 𝑥  ∈  ( Pell1QR ‘ 𝐷 ) 1  <  𝑥 ) | 
						
							| 70 | 69 | ex | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝑐  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  ( ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1  →  ∃ 𝑥  ∈  ( Pell1QR ‘ 𝐷 ) 1  <  𝑥 ) ) | 
						
							| 71 | 70 | rexlimdvva | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ∃ 𝑐  ∈  ℕ ∃ 𝑑  ∈  ℕ ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1  →  ∃ 𝑥  ∈  ( Pell1QR ‘ 𝐷 ) 1  <  𝑥 ) ) | 
						
							| 72 | 11 71 | mpd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ∃ 𝑥  ∈  ( Pell1QR ‘ 𝐷 ) 1  <  𝑥 ) |