Description: There is a nontrivial solution of a Pell equation in the first quadrant. (Contributed by Stefan O'Rear, 18-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | pellqrex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi | |
|
2 | eldifn | |
|
3 | 1 | anim1i | |
4 | fveq2 | |
|
5 | 4 | eleq1d | |
6 | df-squarenn | |
|
7 | 5 6 | elrab2 | |
8 | 3 7 | sylibr | |
9 | 2 8 | mtand | |
10 | pellex | |
|
11 | 1 9 10 | syl2anc | |
12 | simpll | |
|
13 | nnnn0 | |
|
14 | 13 | adantr | |
15 | 14 | ad2antlr | |
16 | nnnn0 | |
|
17 | 16 | adantl | |
18 | 17 | ad2antlr | |
19 | simpr | |
|
20 | pellqrexplicit | |
|
21 | 12 15 18 19 20 | syl31anc | |
22 | 1re | |
|
23 | 22 | a1i | |
24 | 22 22 | readdcli | |
25 | 24 | a1i | |
26 | nnre | |
|
27 | 26 | ad2antrl | |
28 | 1 | adantr | |
29 | 28 | nnrpd | |
30 | 29 | rpsqrtcld | |
31 | 30 | rpred | |
32 | nnre | |
|
33 | 32 | ad2antll | |
34 | 31 33 | remulcld | |
35 | 27 34 | readdcld | |
36 | 22 | ltp1i | |
37 | 36 | a1i | |
38 | nnge1 | |
|
39 | 38 | ad2antrl | |
40 | 1t1e1 | |
|
41 | nnge1 | |
|
42 | sq1 | |
|
43 | 42 | a1i | |
44 | nncn | |
|
45 | 44 | sqsqrtd | |
46 | 41 43 45 | 3brtr4d | |
47 | 22 | a1i | |
48 | nnrp | |
|
49 | 48 | rpsqrtcld | |
50 | 49 | rpred | |
51 | 0le1 | |
|
52 | 51 | a1i | |
53 | 49 | rpge0d | |
54 | 47 50 52 53 | le2sqd | |
55 | 46 54 | mpbird | |
56 | 28 55 | syl | |
57 | nnge1 | |
|
58 | 57 | ad2antll | |
59 | 23 51 | jctir | |
60 | lemul12a | |
|
61 | 59 31 59 33 60 | syl22anc | |
62 | 56 58 61 | mp2and | |
63 | 40 62 | eqbrtrrid | |
64 | 23 23 27 34 39 63 | le2addd | |
65 | 23 25 35 37 64 | ltletrd | |
66 | 65 | adantr | |
67 | breq2 | |
|
68 | 67 | rspcev | |
69 | 21 66 68 | syl2anc | |
70 | 69 | ex | |
71 | 70 | rexlimdvva | |
72 | 11 71 | mpd | |