Metamath Proof Explorer


Theorem pellfundval

Description: Value of the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 18-Sep-2014) (Revised by AV, 17-Sep-2020)

Ref Expression
Assertion pellfundval DPellFundD=supxPell14QRD|1<x<

Proof

Step Hyp Ref Expression
1 fveq2 a=DPell14QRa=Pell14QRD
2 rabeq Pell14QRa=Pell14QRDxPell14QRa|1<x=xPell14QRD|1<x
3 1 2 syl a=DxPell14QRa|1<x=xPell14QRD|1<x
4 3 infeq1d a=DsupxPell14QRa|1<x<=supxPell14QRD|1<x<
5 df-pellfund PellFund=asupxPell14QRa|1<x<
6 ltso <Or
7 6 infex supxPell14QRD|1<x<V
8 4 5 7 fvmpt DPellFundD=supxPell14QRD|1<x<