| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pellfundval |  |-  ( D e. ( NN \ []NN ) -> ( PellFund ` D ) = inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) ) | 
						
							| 2 | 1 | 3ad2ant1 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( PellFund ` D ) = inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) ) | 
						
							| 3 |  | ssrab2 |  |-  { a e. ( Pell14QR ` D ) | 1 < a } C_ ( Pell14QR ` D ) | 
						
							| 4 |  | pell14qrre |  |-  ( ( D e. ( NN \ []NN ) /\ d e. ( Pell14QR ` D ) ) -> d e. RR ) | 
						
							| 5 | 4 | ex |  |-  ( D e. ( NN \ []NN ) -> ( d e. ( Pell14QR ` D ) -> d e. RR ) ) | 
						
							| 6 | 5 | ssrdv |  |-  ( D e. ( NN \ []NN ) -> ( Pell14QR ` D ) C_ RR ) | 
						
							| 7 | 3 6 | sstrid |  |-  ( D e. ( NN \ []NN ) -> { a e. ( Pell14QR ` D ) | 1 < a } C_ RR ) | 
						
							| 8 | 7 | 3ad2ant1 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> { a e. ( Pell14QR ` D ) | 1 < a } C_ RR ) | 
						
							| 9 |  | 1re |  |-  1 e. RR | 
						
							| 10 |  | breq2 |  |-  ( a = c -> ( 1 < a <-> 1 < c ) ) | 
						
							| 11 | 10 | elrab |  |-  ( c e. { a e. ( Pell14QR ` D ) | 1 < a } <-> ( c e. ( Pell14QR ` D ) /\ 1 < c ) ) | 
						
							| 12 |  | pell14qrre |  |-  ( ( D e. ( NN \ []NN ) /\ c e. ( Pell14QR ` D ) ) -> c e. RR ) | 
						
							| 13 |  | ltle |  |-  ( ( 1 e. RR /\ c e. RR ) -> ( 1 < c -> 1 <_ c ) ) | 
						
							| 14 | 9 12 13 | sylancr |  |-  ( ( D e. ( NN \ []NN ) /\ c e. ( Pell14QR ` D ) ) -> ( 1 < c -> 1 <_ c ) ) | 
						
							| 15 | 14 | expimpd |  |-  ( D e. ( NN \ []NN ) -> ( ( c e. ( Pell14QR ` D ) /\ 1 < c ) -> 1 <_ c ) ) | 
						
							| 16 | 11 15 | biimtrid |  |-  ( D e. ( NN \ []NN ) -> ( c e. { a e. ( Pell14QR ` D ) | 1 < a } -> 1 <_ c ) ) | 
						
							| 17 | 16 | ralrimiv |  |-  ( D e. ( NN \ []NN ) -> A. c e. { a e. ( Pell14QR ` D ) | 1 < a } 1 <_ c ) | 
						
							| 18 | 17 | 3ad2ant1 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> A. c e. { a e. ( Pell14QR ` D ) | 1 < a } 1 <_ c ) | 
						
							| 19 |  | breq1 |  |-  ( b = 1 -> ( b <_ c <-> 1 <_ c ) ) | 
						
							| 20 | 19 | ralbidv |  |-  ( b = 1 -> ( A. c e. { a e. ( Pell14QR ` D ) | 1 < a } b <_ c <-> A. c e. { a e. ( Pell14QR ` D ) | 1 < a } 1 <_ c ) ) | 
						
							| 21 | 20 | rspcev |  |-  ( ( 1 e. RR /\ A. c e. { a e. ( Pell14QR ` D ) | 1 < a } 1 <_ c ) -> E. b e. RR A. c e. { a e. ( Pell14QR ` D ) | 1 < a } b <_ c ) | 
						
							| 22 | 9 18 21 | sylancr |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> E. b e. RR A. c e. { a e. ( Pell14QR ` D ) | 1 < a } b <_ c ) | 
						
							| 23 |  | simp2 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> A e. ( Pell14QR ` D ) ) | 
						
							| 24 |  | simp3 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 < A ) | 
						
							| 25 |  | breq2 |  |-  ( a = A -> ( 1 < a <-> 1 < A ) ) | 
						
							| 26 | 25 | elrab |  |-  ( A e. { a e. ( Pell14QR ` D ) | 1 < a } <-> ( A e. ( Pell14QR ` D ) /\ 1 < A ) ) | 
						
							| 27 | 23 24 26 | sylanbrc |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> A e. { a e. ( Pell14QR ` D ) | 1 < a } ) | 
						
							| 28 |  | infrelb |  |-  ( ( { a e. ( Pell14QR ` D ) | 1 < a } C_ RR /\ E. b e. RR A. c e. { a e. ( Pell14QR ` D ) | 1 < a } b <_ c /\ A e. { a e. ( Pell14QR ` D ) | 1 < a } ) -> inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) <_ A ) | 
						
							| 29 | 8 22 27 28 | syl3anc |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) <_ A ) | 
						
							| 30 | 2 29 | eqbrtrd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( PellFund ` D ) <_ A ) |