Metamath Proof Explorer


Theorem pellfundlb

Description: A nontrivial first quadrant solution is at least as large as the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014) (Proof shortened by AV, 15-Sep-2020)

Ref Expression
Assertion pellfundlb DAPell14QRD1<APellFundDA

Proof

Step Hyp Ref Expression
1 pellfundval DPellFundD=supaPell14QRD|1<a<
2 1 3ad2ant1 DAPell14QRD1<APellFundD=supaPell14QRD|1<a<
3 ssrab2 aPell14QRD|1<aPell14QRD
4 pell14qrre DdPell14QRDd
5 4 ex DdPell14QRDd
6 5 ssrdv DPell14QRD
7 3 6 sstrid DaPell14QRD|1<a
8 7 3ad2ant1 DAPell14QRD1<AaPell14QRD|1<a
9 1re 1
10 breq2 a=c1<a1<c
11 10 elrab caPell14QRD|1<acPell14QRD1<c
12 pell14qrre DcPell14QRDc
13 ltle 1c1<c1c
14 9 12 13 sylancr DcPell14QRD1<c1c
15 14 expimpd DcPell14QRD1<c1c
16 11 15 biimtrid DcaPell14QRD|1<a1c
17 16 ralrimiv DcaPell14QRD|1<a1c
18 17 3ad2ant1 DAPell14QRD1<AcaPell14QRD|1<a1c
19 breq1 b=1bc1c
20 19 ralbidv b=1caPell14QRD|1<abccaPell14QRD|1<a1c
21 20 rspcev 1caPell14QRD|1<a1cbcaPell14QRD|1<abc
22 9 18 21 sylancr DAPell14QRD1<AbcaPell14QRD|1<abc
23 simp2 DAPell14QRD1<AAPell14QRD
24 simp3 DAPell14QRD1<A1<A
25 breq2 a=A1<a1<A
26 25 elrab AaPell14QRD|1<aAPell14QRD1<A
27 23 24 26 sylanbrc DAPell14QRD1<AAaPell14QRD|1<a
28 infrelb aPell14QRD|1<abcaPell14QRD|1<abcAaPell14QRD|1<asupaPell14QRD|1<a<A
29 8 22 27 28 syl3anc DAPell14QRD1<AsupaPell14QRD|1<a<A
30 2 29 eqbrtrd DAPell14QRD1<APellFundDA