Metamath Proof Explorer


Theorem pellfundex

Description: The fundamental solution as an infimum is itself a solution, showing that the solution set is discrete.

Since the fundamental solution is an infimum, there must be an element ge to Fund and lt 2*Fund. If this element is equal to the fundamental solution we're done, otherwise use the infimum again to find another element which must be ge Fund and lt the first element; their ratio is a group element in (1,2), contradicting pell14qrgapw . (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pellfundex ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 2re 2 ∈ ℝ
2 pellfundre ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ℝ )
3 remulcl ( ( 2 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) ∈ ℝ ) → ( 2 · ( PellFund ‘ 𝐷 ) ) ∈ ℝ )
4 1 2 3 sylancr ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 2 · ( PellFund ‘ 𝐷 ) ) ∈ ℝ )
5 0red ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 0 ∈ ℝ )
6 1red ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 ∈ ℝ )
7 0lt1 0 < 1
8 7 a1i ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 0 < 1 )
9 pellfundgt1 ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 < ( PellFund ‘ 𝐷 ) )
10 5 6 2 8 9 lttrd ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 0 < ( PellFund ‘ 𝐷 ) )
11 2 10 elrpd ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ℝ+ )
12 2 11 ltaddrpd ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) < ( ( PellFund ‘ 𝐷 ) + ( PellFund ‘ 𝐷 ) ) )
13 2 recnd ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ℂ )
14 13 2timesd ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 2 · ( PellFund ‘ 𝐷 ) ) = ( ( PellFund ‘ 𝐷 ) + ( PellFund ‘ 𝐷 ) ) )
15 12 14 breqtrrd ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) < ( 2 · ( PellFund ‘ 𝐷 ) ) )
16 pellfundglb ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 2 · ( PellFund ‘ 𝐷 ) ) ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < ( 2 · ( PellFund ‘ 𝐷 ) ) ) → ∃ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ( ( PellFund ‘ 𝐷 ) ≤ 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) )
17 4 15 16 mpd3an23 ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ∃ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ( ( PellFund ‘ 𝐷 ) ≤ 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) )
18 2 adantr ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) → ( PellFund ‘ 𝐷 ) ∈ ℝ )
19 pell1qrss14 ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) )
20 19 sselda ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) → 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) )
21 pell14qrre ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝑎 ∈ ℝ )
22 20 21 syldan ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) → 𝑎 ∈ ℝ )
23 18 22 leloed ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ≤ 𝑎 ↔ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∨ ( PellFund ‘ 𝐷 ) = 𝑎 ) ) )
24 simp-4l ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) ) → 𝐷 ∈ ( ℕ ∖ ◻NN ) )
25 simp-4r ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) ) → 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) )
26 simplr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) ) → 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) )
27 simprr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) ) → 𝑏 < 𝑎 )
28 22 ad3antrrr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) ) → 𝑎 ∈ ℝ )
29 4 ad4antr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) ) → ( 2 · ( PellFund ‘ 𝐷 ) ) ∈ ℝ )
30 19 ad4antr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) ) → ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) )
31 30 26 sseldd ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) ) → 𝑏 ∈ ( Pell14QR ‘ 𝐷 ) )
32 pell14qrre ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑏 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝑏 ∈ ℝ )
33 24 31 32 syl2anc ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) ) → 𝑏 ∈ ℝ )
34 remulcl ( ( 2 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 2 · 𝑏 ) ∈ ℝ )
35 1 33 34 sylancr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) ) → ( 2 · 𝑏 ) ∈ ℝ )
36 simprr ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) → 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) )
37 36 ad2antrr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) ) → 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) )
38 simprl ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) ) → ( PellFund ‘ 𝐷 ) ≤ 𝑏 )
39 2 ad4antr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) ) → ( PellFund ‘ 𝐷 ) ∈ ℝ )
40 1 a1i ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) ) → 2 ∈ ℝ )
41 2pos 0 < 2
42 41 a1i ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) ) → 0 < 2 )
43 lemul2 ( ( ( PellFund ‘ 𝐷 ) ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ↔ ( 2 · ( PellFund ‘ 𝐷 ) ) ≤ ( 2 · 𝑏 ) ) )
44 39 33 40 42 43 syl112anc ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) ) → ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ↔ ( 2 · ( PellFund ‘ 𝐷 ) ) ≤ ( 2 · 𝑏 ) ) )
45 38 44 mpbid ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) ) → ( 2 · ( PellFund ‘ 𝐷 ) ) ≤ ( 2 · 𝑏 ) )
46 28 29 35 37 45 ltletrd ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) ) → 𝑎 < ( 2 · 𝑏 ) )
47 simp1 ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → 𝐷 ∈ ( ℕ ∖ ◻NN ) )
48 19 3ad2ant1 ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) )
49 simp2l ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) )
50 48 49 sseldd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) )
51 simp2r ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) )
52 48 51 sseldd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → 𝑏 ∈ ( Pell14QR ‘ 𝐷 ) )
53 pell14qrdivcl ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) )
54 47 50 52 53 syl3anc ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) )
55 47 52 32 syl2anc ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → 𝑏 ∈ ℝ )
56 55 recnd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → 𝑏 ∈ ℂ )
57 56 mulid2d ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → ( 1 · 𝑏 ) = 𝑏 )
58 simp3l ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → 𝑏 < 𝑎 )
59 57 58 eqbrtrd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → ( 1 · 𝑏 ) < 𝑎 )
60 1red ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → 1 ∈ ℝ )
61 47 50 21 syl2anc ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → 𝑎 ∈ ℝ )
62 pell14qrgt0 ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑏 ∈ ( Pell14QR ‘ 𝐷 ) ) → 0 < 𝑏 )
63 47 52 62 syl2anc ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → 0 < 𝑏 )
64 ltmuldiv ( ( 1 ∈ ℝ ∧ 𝑎 ∈ ℝ ∧ ( 𝑏 ∈ ℝ ∧ 0 < 𝑏 ) ) → ( ( 1 · 𝑏 ) < 𝑎 ↔ 1 < ( 𝑎 / 𝑏 ) ) )
65 60 61 55 63 64 syl112anc ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → ( ( 1 · 𝑏 ) < 𝑎 ↔ 1 < ( 𝑎 / 𝑏 ) ) )
66 59 65 mpbid ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → 1 < ( 𝑎 / 𝑏 ) )
67 simp3r ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → 𝑎 < ( 2 · 𝑏 ) )
68 1 a1i ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → 2 ∈ ℝ )
69 ltdivmul2 ( ( 𝑎 ∈ ℝ ∧ 2 ∈ ℝ ∧ ( 𝑏 ∈ ℝ ∧ 0 < 𝑏 ) ) → ( ( 𝑎 / 𝑏 ) < 2 ↔ 𝑎 < ( 2 · 𝑏 ) ) )
70 61 68 55 63 69 syl112anc ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → ( ( 𝑎 / 𝑏 ) < 2 ↔ 𝑎 < ( 2 · 𝑏 ) ) )
71 67 70 mpbird ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → ( 𝑎 / 𝑏 ) < 2 )
72 simprr ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 1 < ( 𝑎 / 𝑏 ) ∧ ( 𝑎 / 𝑏 ) < 2 ) ) → ( 𝑎 / 𝑏 ) < 2 )
73 simpll ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 1 < ( 𝑎 / 𝑏 ) ∧ ( 𝑎 / 𝑏 ) < 2 ) ) → 𝐷 ∈ ( ℕ ∖ ◻NN ) )
74 simplr ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 1 < ( 𝑎 / 𝑏 ) ∧ ( 𝑎 / 𝑏 ) < 2 ) ) → ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) )
75 simprl ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 1 < ( 𝑎 / 𝑏 ) ∧ ( 𝑎 / 𝑏 ) < 2 ) ) → 1 < ( 𝑎 / 𝑏 ) )
76 pell14qrgapw ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < ( 𝑎 / 𝑏 ) ) → 2 < ( 𝑎 / 𝑏 ) )
77 73 74 75 76 syl3anc ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 1 < ( 𝑎 / 𝑏 ) ∧ ( 𝑎 / 𝑏 ) < 2 ) ) → 2 < ( 𝑎 / 𝑏 ) )
78 pell14qrre ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝑎 / 𝑏 ) ∈ ℝ )
79 78 adantr ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 1 < ( 𝑎 / 𝑏 ) ∧ ( 𝑎 / 𝑏 ) < 2 ) ) → ( 𝑎 / 𝑏 ) ∈ ℝ )
80 ltnsym ( ( 2 ∈ ℝ ∧ ( 𝑎 / 𝑏 ) ∈ ℝ ) → ( 2 < ( 𝑎 / 𝑏 ) → ¬ ( 𝑎 / 𝑏 ) < 2 ) )
81 1 79 80 sylancr ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 1 < ( 𝑎 / 𝑏 ) ∧ ( 𝑎 / 𝑏 ) < 2 ) ) → ( 2 < ( 𝑎 / 𝑏 ) → ¬ ( 𝑎 / 𝑏 ) < 2 ) )
82 77 81 mpd ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 1 < ( 𝑎 / 𝑏 ) ∧ ( 𝑎 / 𝑏 ) < 2 ) ) → ¬ ( 𝑎 / 𝑏 ) < 2 )
83 72 82 pm2.21dd ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 1 < ( 𝑎 / 𝑏 ) ∧ ( 𝑎 / 𝑏 ) < 2 ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) )
84 47 54 66 71 83 syl22anc ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎𝑎 < ( 2 · 𝑏 ) ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) )
85 24 25 26 27 46 84 syl122anc ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) )
86 simpll ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) → 𝐷 ∈ ( ℕ ∖ ◻NN ) )
87 22 adantr ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) → 𝑎 ∈ ℝ )
88 simprl ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) → ( PellFund ‘ 𝐷 ) < 𝑎 )
89 pellfundglb ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝑎 ) → ∃ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) )
90 86 87 88 89 syl3anc ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) → ∃ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ( ( PellFund ‘ 𝐷 ) ≤ 𝑏𝑏 < 𝑎 ) )
91 85 90 r19.29a ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) )
92 91 exp32 ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) < 𝑎 → ( 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) )
93 simp2 ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( PellFund ‘ 𝐷 ) = 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) → ( PellFund ‘ 𝐷 ) = 𝑎 )
94 simp1r ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( PellFund ‘ 𝐷 ) = 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) → 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) )
95 93 94 eqeltrd ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( PellFund ‘ 𝐷 ) = 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) )
96 95 3exp ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) = 𝑎 → ( 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) )
97 92 96 jaod ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) → ( ( ( PellFund ‘ 𝐷 ) < 𝑎 ∨ ( PellFund ‘ 𝐷 ) = 𝑎 ) → ( 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) )
98 23 97 sylbid ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ≤ 𝑎 → ( 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) )
99 98 impd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) → ( ( ( PellFund ‘ 𝐷 ) ≤ 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) )
100 99 rexlimdva ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ∃ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ( ( PellFund ‘ 𝐷 ) ≤ 𝑎𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) )
101 17 100 mpd ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) )