Description: The fundamental solution as an infimum is itself a solution, showing that the solution set is discrete.
Since the fundamental solution is an infimum, there must be an element ge to Fund and lt 2*Fund. If this element is equal to the fundamental solution we're done, otherwise use the infimum again to find another element which must be ge Fund and lt the first element; their ratio is a group element in (1,2), contradicting pell14qrgapw . (Contributed by Stefan O'Rear, 18-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | pellfundex | ⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re | ⊢ 2 ∈ ℝ | |
2 | pellfundre | ⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ℝ ) | |
3 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) ∈ ℝ ) → ( 2 · ( PellFund ‘ 𝐷 ) ) ∈ ℝ ) | |
4 | 1 2 3 | sylancr | ⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 2 · ( PellFund ‘ 𝐷 ) ) ∈ ℝ ) |
5 | 0red | ⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 0 ∈ ℝ ) | |
6 | 1red | ⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 ∈ ℝ ) | |
7 | 0lt1 | ⊢ 0 < 1 | |
8 | 7 | a1i | ⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 0 < 1 ) |
9 | pellfundgt1 | ⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 < ( PellFund ‘ 𝐷 ) ) | |
10 | 5 6 2 8 9 | lttrd | ⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 0 < ( PellFund ‘ 𝐷 ) ) |
11 | 2 10 | elrpd | ⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ℝ+ ) |
12 | 2 11 | ltaddrpd | ⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) < ( ( PellFund ‘ 𝐷 ) + ( PellFund ‘ 𝐷 ) ) ) |
13 | 2 | recnd | ⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ℂ ) |
14 | 13 | 2timesd | ⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 2 · ( PellFund ‘ 𝐷 ) ) = ( ( PellFund ‘ 𝐷 ) + ( PellFund ‘ 𝐷 ) ) ) |
15 | 12 14 | breqtrrd | ⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) < ( 2 · ( PellFund ‘ 𝐷 ) ) ) |
16 | pellfundglb | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 2 · ( PellFund ‘ 𝐷 ) ) ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < ( 2 · ( PellFund ‘ 𝐷 ) ) ) → ∃ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ( ( PellFund ‘ 𝐷 ) ≤ 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) | |
17 | 4 15 16 | mpd3an23 | ⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ∃ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ( ( PellFund ‘ 𝐷 ) ≤ 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) |
18 | 2 | adantr | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) → ( PellFund ‘ 𝐷 ) ∈ ℝ ) |
19 | pell1qrss14 | ⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) ) | |
20 | 19 | sselda | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) → 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ) |
21 | pell14qrre | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝑎 ∈ ℝ ) | |
22 | 20 21 | syldan | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) → 𝑎 ∈ ℝ ) |
23 | 18 22 | leloed | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ≤ 𝑎 ↔ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∨ ( PellFund ‘ 𝐷 ) = 𝑎 ) ) ) |
24 | simp-4l | ⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) → 𝐷 ∈ ( ℕ ∖ ◻NN ) ) | |
25 | simp-4r | ⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) → 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) | |
26 | simplr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) → 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) | |
27 | simprr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) → 𝑏 < 𝑎 ) | |
28 | 22 | ad3antrrr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) → 𝑎 ∈ ℝ ) |
29 | 4 | ad4antr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) → ( 2 · ( PellFund ‘ 𝐷 ) ) ∈ ℝ ) |
30 | 19 | ad4antr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) → ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) ) |
31 | 30 26 | sseldd | ⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) → 𝑏 ∈ ( Pell14QR ‘ 𝐷 ) ) |
32 | pell14qrre | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑏 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝑏 ∈ ℝ ) | |
33 | 24 31 32 | syl2anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) → 𝑏 ∈ ℝ ) |
34 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 2 · 𝑏 ) ∈ ℝ ) | |
35 | 1 33 34 | sylancr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) → ( 2 · 𝑏 ) ∈ ℝ ) |
36 | simprr | ⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) → 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) | |
37 | 36 | ad2antrr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) → 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) |
38 | simprl | ⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) → ( PellFund ‘ 𝐷 ) ≤ 𝑏 ) | |
39 | 2 | ad4antr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) → ( PellFund ‘ 𝐷 ) ∈ ℝ ) |
40 | 1 | a1i | ⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) → 2 ∈ ℝ ) |
41 | 2pos | ⊢ 0 < 2 | |
42 | 41 | a1i | ⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) → 0 < 2 ) |
43 | lemul2 | ⊢ ( ( ( PellFund ‘ 𝐷 ) ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ↔ ( 2 · ( PellFund ‘ 𝐷 ) ) ≤ ( 2 · 𝑏 ) ) ) | |
44 | 39 33 40 42 43 | syl112anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) → ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ↔ ( 2 · ( PellFund ‘ 𝐷 ) ) ≤ ( 2 · 𝑏 ) ) ) |
45 | 38 44 | mpbid | ⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) → ( 2 · ( PellFund ‘ 𝐷 ) ) ≤ ( 2 · 𝑏 ) ) |
46 | 28 29 35 37 45 | ltletrd | ⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) → 𝑎 < ( 2 · 𝑏 ) ) |
47 | simp1 | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → 𝐷 ∈ ( ℕ ∖ ◻NN ) ) | |
48 | 19 | 3ad2ant1 | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) ) |
49 | simp2l | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) | |
50 | 48 49 | sseldd | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ) |
51 | simp2r | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) | |
52 | 48 51 | sseldd | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → 𝑏 ∈ ( Pell14QR ‘ 𝐷 ) ) |
53 | pell14qrdivcl | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) | |
54 | 47 50 52 53 | syl3anc | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
55 | 47 52 32 | syl2anc | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → 𝑏 ∈ ℝ ) |
56 | 55 | recnd | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → 𝑏 ∈ ℂ ) |
57 | 56 | mulid2d | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → ( 1 · 𝑏 ) = 𝑏 ) |
58 | simp3l | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → 𝑏 < 𝑎 ) | |
59 | 57 58 | eqbrtrd | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → ( 1 · 𝑏 ) < 𝑎 ) |
60 | 1red | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → 1 ∈ ℝ ) | |
61 | 47 50 21 | syl2anc | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → 𝑎 ∈ ℝ ) |
62 | pell14qrgt0 | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑏 ∈ ( Pell14QR ‘ 𝐷 ) ) → 0 < 𝑏 ) | |
63 | 47 52 62 | syl2anc | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → 0 < 𝑏 ) |
64 | ltmuldiv | ⊢ ( ( 1 ∈ ℝ ∧ 𝑎 ∈ ℝ ∧ ( 𝑏 ∈ ℝ ∧ 0 < 𝑏 ) ) → ( ( 1 · 𝑏 ) < 𝑎 ↔ 1 < ( 𝑎 / 𝑏 ) ) ) | |
65 | 60 61 55 63 64 | syl112anc | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → ( ( 1 · 𝑏 ) < 𝑎 ↔ 1 < ( 𝑎 / 𝑏 ) ) ) |
66 | 59 65 | mpbid | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → 1 < ( 𝑎 / 𝑏 ) ) |
67 | simp3r | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → 𝑎 < ( 2 · 𝑏 ) ) | |
68 | 1 | a1i | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → 2 ∈ ℝ ) |
69 | ltdivmul2 | ⊢ ( ( 𝑎 ∈ ℝ ∧ 2 ∈ ℝ ∧ ( 𝑏 ∈ ℝ ∧ 0 < 𝑏 ) ) → ( ( 𝑎 / 𝑏 ) < 2 ↔ 𝑎 < ( 2 · 𝑏 ) ) ) | |
70 | 61 68 55 63 69 | syl112anc | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → ( ( 𝑎 / 𝑏 ) < 2 ↔ 𝑎 < ( 2 · 𝑏 ) ) ) |
71 | 67 70 | mpbird | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → ( 𝑎 / 𝑏 ) < 2 ) |
72 | simprr | ⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 1 < ( 𝑎 / 𝑏 ) ∧ ( 𝑎 / 𝑏 ) < 2 ) ) → ( 𝑎 / 𝑏 ) < 2 ) | |
73 | simpll | ⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 1 < ( 𝑎 / 𝑏 ) ∧ ( 𝑎 / 𝑏 ) < 2 ) ) → 𝐷 ∈ ( ℕ ∖ ◻NN ) ) | |
74 | simplr | ⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 1 < ( 𝑎 / 𝑏 ) ∧ ( 𝑎 / 𝑏 ) < 2 ) ) → ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) | |
75 | simprl | ⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 1 < ( 𝑎 / 𝑏 ) ∧ ( 𝑎 / 𝑏 ) < 2 ) ) → 1 < ( 𝑎 / 𝑏 ) ) | |
76 | pell14qrgapw | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < ( 𝑎 / 𝑏 ) ) → 2 < ( 𝑎 / 𝑏 ) ) | |
77 | 73 74 75 76 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 1 < ( 𝑎 / 𝑏 ) ∧ ( 𝑎 / 𝑏 ) < 2 ) ) → 2 < ( 𝑎 / 𝑏 ) ) |
78 | pell14qrre | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝑎 / 𝑏 ) ∈ ℝ ) | |
79 | 78 | adantr | ⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 1 < ( 𝑎 / 𝑏 ) ∧ ( 𝑎 / 𝑏 ) < 2 ) ) → ( 𝑎 / 𝑏 ) ∈ ℝ ) |
80 | ltnsym | ⊢ ( ( 2 ∈ ℝ ∧ ( 𝑎 / 𝑏 ) ∈ ℝ ) → ( 2 < ( 𝑎 / 𝑏 ) → ¬ ( 𝑎 / 𝑏 ) < 2 ) ) | |
81 | 1 79 80 | sylancr | ⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 1 < ( 𝑎 / 𝑏 ) ∧ ( 𝑎 / 𝑏 ) < 2 ) ) → ( 2 < ( 𝑎 / 𝑏 ) → ¬ ( 𝑎 / 𝑏 ) < 2 ) ) |
82 | 77 81 | mpd | ⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 1 < ( 𝑎 / 𝑏 ) ∧ ( 𝑎 / 𝑏 ) < 2 ) ) → ¬ ( 𝑎 / 𝑏 ) < 2 ) |
83 | 72 82 | pm2.21dd | ⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 / 𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 1 < ( 𝑎 / 𝑏 ) ∧ ( 𝑎 / 𝑏 ) < 2 ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) |
84 | 47 54 66 71 83 | syl22anc | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( 𝑏 < 𝑎 ∧ 𝑎 < ( 2 · 𝑏 ) ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) |
85 | 24 25 26 27 46 84 | syl122anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) ∧ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) |
86 | simpll | ⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) → 𝐷 ∈ ( ℕ ∖ ◻NN ) ) | |
87 | 22 | adantr | ⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) → 𝑎 ∈ ℝ ) |
88 | simprl | ⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) → ( PellFund ‘ 𝐷 ) < 𝑎 ) | |
89 | pellfundglb | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ℝ ∧ ( PellFund ‘ 𝐷 ) < 𝑎 ) → ∃ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) | |
90 | 86 87 88 89 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) → ∃ 𝑏 ∈ ( Pell1QR ‘ 𝐷 ) ( ( PellFund ‘ 𝐷 ) ≤ 𝑏 ∧ 𝑏 < 𝑎 ) ) |
91 | 85 90 | r19.29a | ⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( ( PellFund ‘ 𝐷 ) < 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) |
92 | 91 | exp32 | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) < 𝑎 → ( 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) ) |
93 | simp2 | ⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( PellFund ‘ 𝐷 ) = 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) → ( PellFund ‘ 𝐷 ) = 𝑎 ) | |
94 | simp1r | ⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( PellFund ‘ 𝐷 ) = 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) → 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) | |
95 | 93 94 | eqeltrd | ⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) ∧ ( PellFund ‘ 𝐷 ) = 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) |
96 | 95 | 3exp | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) = 𝑎 → ( 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) ) |
97 | 92 96 | jaod | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) → ( ( ( PellFund ‘ 𝐷 ) < 𝑎 ∨ ( PellFund ‘ 𝐷 ) = 𝑎 ) → ( 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) ) |
98 | 23 97 | sylbid | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ≤ 𝑎 → ( 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) ) |
99 | 98 | impd | ⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ) → ( ( ( PellFund ‘ 𝐷 ) ≤ 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) |
100 | 99 | rexlimdva | ⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ∃ 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ( ( PellFund ‘ 𝐷 ) ≤ 𝑎 ∧ 𝑎 < ( 2 · ( PellFund ‘ 𝐷 ) ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) |
101 | 17 100 | mpd | ⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) ) |