Step |
Hyp |
Ref |
Expression |
1 |
|
pell14qrrp |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. RR+ ) |
2 |
|
pellfundrp |
|- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. RR+ ) |
3 |
2
|
adantr |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( PellFund ` D ) e. RR+ ) |
4 |
|
pellfundne1 |
|- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) =/= 1 ) |
5 |
4
|
adantr |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( PellFund ` D ) =/= 1 ) |
6 |
|
reglogcl |
|- ( ( A e. RR+ /\ ( PellFund ` D ) e. RR+ /\ ( PellFund ` D ) =/= 1 ) -> ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) e. RR ) |
7 |
1 3 5 6
|
syl3anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) e. RR ) |
8 |
7
|
flcld |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) e. ZZ ) |
9 |
|
pell14qrre |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. RR ) |
10 |
9
|
recnd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. CC ) |
11 |
3 8
|
rpexpcld |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( PellFund ` D ) ^ ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) e. RR+ ) |
12 |
11
|
rpcnd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( PellFund ` D ) ^ ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) e. CC ) |
13 |
8
|
znegcld |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) e. ZZ ) |
14 |
3 13
|
rpexpcld |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) e. RR+ ) |
15 |
14
|
rpcnd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) e. CC ) |
16 |
14
|
rpne0d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) =/= 0 ) |
17 |
|
simpl |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> D e. ( NN \ []NN ) ) |
18 |
|
pell1qrss14 |
|- ( D e. ( NN \ []NN ) -> ( Pell1QR ` D ) C_ ( Pell14QR ` D ) ) |
19 |
|
pellfundex |
|- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. ( Pell1QR ` D ) ) |
20 |
18 19
|
sseldd |
|- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. ( Pell14QR ` D ) ) |
21 |
20
|
adantr |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( PellFund ` D ) e. ( Pell14QR ` D ) ) |
22 |
|
pell14qrexpcl |
|- ( ( D e. ( NN \ []NN ) /\ ( PellFund ` D ) e. ( Pell14QR ` D ) /\ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) e. ZZ ) -> ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) e. ( Pell14QR ` D ) ) |
23 |
17 21 13 22
|
syl3anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) e. ( Pell14QR ` D ) ) |
24 |
|
pell14qrmulcl |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) e. ( Pell14QR ` D ) ) -> ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) e. ( Pell14QR ` D ) ) |
25 |
23 24
|
mpd3an3 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) e. ( Pell14QR ` D ) ) |
26 |
|
1rp |
|- 1 e. RR+ |
27 |
26
|
a1i |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> 1 e. RR+ ) |
28 |
|
modge0 |
|- ( ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) e. RR /\ 1 e. RR+ ) -> 0 <_ ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) mod 1 ) ) |
29 |
7 27 28
|
syl2anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> 0 <_ ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) mod 1 ) ) |
30 |
7
|
recnd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) e. CC ) |
31 |
8
|
zcnd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) e. CC ) |
32 |
30 31
|
negsubd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) + -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) = ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) - ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) |
33 |
|
modfrac |
|- ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) e. RR -> ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) mod 1 ) = ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) - ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) |
34 |
7 33
|
syl |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) mod 1 ) = ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) - ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) |
35 |
32 34
|
eqtr4d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) + -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) = ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) mod 1 ) ) |
36 |
29 35
|
breqtrrd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> 0 <_ ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) + -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) |
37 |
|
reglog1 |
|- ( ( ( PellFund ` D ) e. RR+ /\ ( PellFund ` D ) =/= 1 ) -> ( ( log ` 1 ) / ( log ` ( PellFund ` D ) ) ) = 0 ) |
38 |
3 5 37
|
syl2anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( log ` 1 ) / ( log ` ( PellFund ` D ) ) ) = 0 ) |
39 |
|
reglogmul |
|- ( ( A e. RR+ /\ ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) e. RR+ /\ ( ( PellFund ` D ) e. RR+ /\ ( PellFund ` D ) =/= 1 ) ) -> ( ( log ` ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) = ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) + ( ( log ` ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) ) ) |
40 |
1 14 3 5 39
|
syl112anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( log ` ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) = ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) + ( ( log ` ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) ) ) |
41 |
|
reglogexpbas |
|- ( ( -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) e. ZZ /\ ( ( PellFund ` D ) e. RR+ /\ ( PellFund ` D ) =/= 1 ) ) -> ( ( log ` ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) = -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) |
42 |
13 3 5 41
|
syl12anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( log ` ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) = -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) |
43 |
42
|
oveq2d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) + ( ( log ` ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) ) = ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) + -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) |
44 |
40 43
|
eqtrd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( log ` ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) = ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) + -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) |
45 |
36 38 44
|
3brtr4d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( log ` 1 ) / ( log ` ( PellFund ` D ) ) ) <_ ( ( log ` ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) ) |
46 |
1 14
|
rpmulcld |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) e. RR+ ) |
47 |
|
pellfundgt1 |
|- ( D e. ( NN \ []NN ) -> 1 < ( PellFund ` D ) ) |
48 |
47
|
adantr |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> 1 < ( PellFund ` D ) ) |
49 |
|
reglogleb |
|- ( ( ( 1 e. RR+ /\ ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) e. RR+ ) /\ ( ( PellFund ` D ) e. RR+ /\ 1 < ( PellFund ` D ) ) ) -> ( 1 <_ ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) <-> ( ( log ` 1 ) / ( log ` ( PellFund ` D ) ) ) <_ ( ( log ` ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) ) ) |
50 |
27 46 3 48 49
|
syl22anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( 1 <_ ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) <-> ( ( log ` 1 ) / ( log ` ( PellFund ` D ) ) ) <_ ( ( log ` ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) ) ) |
51 |
45 50
|
mpbird |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> 1 <_ ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) |
52 |
|
modlt |
|- ( ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) e. RR /\ 1 e. RR+ ) -> ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) mod 1 ) < 1 ) |
53 |
7 27 52
|
syl2anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) mod 1 ) < 1 ) |
54 |
35 53
|
eqbrtrd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) + -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) < 1 ) |
55 |
|
reglogbas |
|- ( ( ( PellFund ` D ) e. RR+ /\ ( PellFund ` D ) =/= 1 ) -> ( ( log ` ( PellFund ` D ) ) / ( log ` ( PellFund ` D ) ) ) = 1 ) |
56 |
3 5 55
|
syl2anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( log ` ( PellFund ` D ) ) / ( log ` ( PellFund ` D ) ) ) = 1 ) |
57 |
54 44 56
|
3brtr4d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( log ` ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) < ( ( log ` ( PellFund ` D ) ) / ( log ` ( PellFund ` D ) ) ) ) |
58 |
|
reglogltb |
|- ( ( ( ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) e. RR+ /\ ( PellFund ` D ) e. RR+ ) /\ ( ( PellFund ` D ) e. RR+ /\ 1 < ( PellFund ` D ) ) ) -> ( ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) < ( PellFund ` D ) <-> ( ( log ` ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) < ( ( log ` ( PellFund ` D ) ) / ( log ` ( PellFund ` D ) ) ) ) ) |
59 |
46 3 3 48 58
|
syl22anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) < ( PellFund ` D ) <-> ( ( log ` ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) < ( ( log ` ( PellFund ` D ) ) / ( log ` ( PellFund ` D ) ) ) ) ) |
60 |
57 59
|
mpbird |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) < ( PellFund ` D ) ) |
61 |
|
pellfund14gap |
|- ( ( D e. ( NN \ []NN ) /\ ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) e. ( Pell14QR ` D ) /\ ( 1 <_ ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) /\ ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) < ( PellFund ` D ) ) ) -> ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) = 1 ) |
62 |
17 25 51 60 61
|
syl112anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) = 1 ) |
63 |
31
|
negidd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) + -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) = 0 ) |
64 |
63
|
oveq2d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( PellFund ` D ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) + -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) = ( ( PellFund ` D ) ^ 0 ) ) |
65 |
3
|
rpcnd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( PellFund ` D ) e. CC ) |
66 |
3
|
rpne0d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( PellFund ` D ) =/= 0 ) |
67 |
|
expaddz |
|- ( ( ( ( PellFund ` D ) e. CC /\ ( PellFund ` D ) =/= 0 ) /\ ( ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) e. ZZ /\ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) e. ZZ ) ) -> ( ( PellFund ` D ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) + -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) = ( ( ( PellFund ` D ) ^ ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) |
68 |
65 66 8 13 67
|
syl22anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( PellFund ` D ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) + -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) = ( ( ( PellFund ` D ) ^ ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) |
69 |
65
|
exp0d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( PellFund ` D ) ^ 0 ) = 1 ) |
70 |
64 68 69
|
3eqtr3rd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> 1 = ( ( ( PellFund ` D ) ^ ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) |
71 |
62 70
|
eqtrd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) = ( ( ( PellFund ` D ) ^ ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) |
72 |
10 12 15 16 71
|
mulcan2ad |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A = ( ( PellFund ` D ) ^ ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) |
73 |
|
oveq2 |
|- ( x = ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) -> ( ( PellFund ` D ) ^ x ) = ( ( PellFund ` D ) ^ ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) |
74 |
73
|
rspceeqv |
|- ( ( ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) e. ZZ /\ A = ( ( PellFund ` D ) ^ ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) -> E. x e. ZZ A = ( ( PellFund ` D ) ^ x ) ) |
75 |
8 72 74
|
syl2anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> E. x e. ZZ A = ( ( PellFund ` D ) ^ x ) ) |