| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pell14qrrp |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. RR+ ) |
| 2 |
|
pellfundrp |
|- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. RR+ ) |
| 3 |
2
|
adantr |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( PellFund ` D ) e. RR+ ) |
| 4 |
|
pellfundne1 |
|- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) =/= 1 ) |
| 5 |
4
|
adantr |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( PellFund ` D ) =/= 1 ) |
| 6 |
|
reglogcl |
|- ( ( A e. RR+ /\ ( PellFund ` D ) e. RR+ /\ ( PellFund ` D ) =/= 1 ) -> ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) e. RR ) |
| 7 |
1 3 5 6
|
syl3anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) e. RR ) |
| 8 |
7
|
flcld |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) e. ZZ ) |
| 9 |
|
pell14qrre |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. RR ) |
| 10 |
9
|
recnd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. CC ) |
| 11 |
3 8
|
rpexpcld |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( PellFund ` D ) ^ ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) e. RR+ ) |
| 12 |
11
|
rpcnd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( PellFund ` D ) ^ ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) e. CC ) |
| 13 |
8
|
znegcld |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) e. ZZ ) |
| 14 |
3 13
|
rpexpcld |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) e. RR+ ) |
| 15 |
14
|
rpcnd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) e. CC ) |
| 16 |
14
|
rpne0d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) =/= 0 ) |
| 17 |
|
simpl |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> D e. ( NN \ []NN ) ) |
| 18 |
|
pell1qrss14 |
|- ( D e. ( NN \ []NN ) -> ( Pell1QR ` D ) C_ ( Pell14QR ` D ) ) |
| 19 |
|
pellfundex |
|- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. ( Pell1QR ` D ) ) |
| 20 |
18 19
|
sseldd |
|- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. ( Pell14QR ` D ) ) |
| 21 |
20
|
adantr |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( PellFund ` D ) e. ( Pell14QR ` D ) ) |
| 22 |
|
pell14qrexpcl |
|- ( ( D e. ( NN \ []NN ) /\ ( PellFund ` D ) e. ( Pell14QR ` D ) /\ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) e. ZZ ) -> ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) e. ( Pell14QR ` D ) ) |
| 23 |
17 21 13 22
|
syl3anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) e. ( Pell14QR ` D ) ) |
| 24 |
|
pell14qrmulcl |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) e. ( Pell14QR ` D ) ) -> ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) e. ( Pell14QR ` D ) ) |
| 25 |
23 24
|
mpd3an3 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) e. ( Pell14QR ` D ) ) |
| 26 |
|
1rp |
|- 1 e. RR+ |
| 27 |
26
|
a1i |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> 1 e. RR+ ) |
| 28 |
|
modge0 |
|- ( ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) e. RR /\ 1 e. RR+ ) -> 0 <_ ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) mod 1 ) ) |
| 29 |
7 27 28
|
syl2anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> 0 <_ ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) mod 1 ) ) |
| 30 |
7
|
recnd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) e. CC ) |
| 31 |
8
|
zcnd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) e. CC ) |
| 32 |
30 31
|
negsubd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) + -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) = ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) - ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) |
| 33 |
|
modfrac |
|- ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) e. RR -> ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) mod 1 ) = ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) - ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) |
| 34 |
7 33
|
syl |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) mod 1 ) = ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) - ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) |
| 35 |
32 34
|
eqtr4d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) + -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) = ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) mod 1 ) ) |
| 36 |
29 35
|
breqtrrd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> 0 <_ ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) + -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) |
| 37 |
|
reglog1 |
|- ( ( ( PellFund ` D ) e. RR+ /\ ( PellFund ` D ) =/= 1 ) -> ( ( log ` 1 ) / ( log ` ( PellFund ` D ) ) ) = 0 ) |
| 38 |
3 5 37
|
syl2anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( log ` 1 ) / ( log ` ( PellFund ` D ) ) ) = 0 ) |
| 39 |
|
reglogmul |
|- ( ( A e. RR+ /\ ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) e. RR+ /\ ( ( PellFund ` D ) e. RR+ /\ ( PellFund ` D ) =/= 1 ) ) -> ( ( log ` ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) = ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) + ( ( log ` ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) ) ) |
| 40 |
1 14 3 5 39
|
syl112anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( log ` ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) = ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) + ( ( log ` ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) ) ) |
| 41 |
|
reglogexpbas |
|- ( ( -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) e. ZZ /\ ( ( PellFund ` D ) e. RR+ /\ ( PellFund ` D ) =/= 1 ) ) -> ( ( log ` ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) = -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) |
| 42 |
13 3 5 41
|
syl12anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( log ` ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) = -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) |
| 43 |
42
|
oveq2d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) + ( ( log ` ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) ) = ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) + -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) |
| 44 |
40 43
|
eqtrd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( log ` ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) = ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) + -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) |
| 45 |
36 38 44
|
3brtr4d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( log ` 1 ) / ( log ` ( PellFund ` D ) ) ) <_ ( ( log ` ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) ) |
| 46 |
1 14
|
rpmulcld |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) e. RR+ ) |
| 47 |
|
pellfundgt1 |
|- ( D e. ( NN \ []NN ) -> 1 < ( PellFund ` D ) ) |
| 48 |
47
|
adantr |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> 1 < ( PellFund ` D ) ) |
| 49 |
|
reglogleb |
|- ( ( ( 1 e. RR+ /\ ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) e. RR+ ) /\ ( ( PellFund ` D ) e. RR+ /\ 1 < ( PellFund ` D ) ) ) -> ( 1 <_ ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) <-> ( ( log ` 1 ) / ( log ` ( PellFund ` D ) ) ) <_ ( ( log ` ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) ) ) |
| 50 |
27 46 3 48 49
|
syl22anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( 1 <_ ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) <-> ( ( log ` 1 ) / ( log ` ( PellFund ` D ) ) ) <_ ( ( log ` ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) ) ) |
| 51 |
45 50
|
mpbird |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> 1 <_ ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) |
| 52 |
|
modlt |
|- ( ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) e. RR /\ 1 e. RR+ ) -> ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) mod 1 ) < 1 ) |
| 53 |
7 27 52
|
syl2anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) mod 1 ) < 1 ) |
| 54 |
35 53
|
eqbrtrd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) + -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) < 1 ) |
| 55 |
|
reglogbas |
|- ( ( ( PellFund ` D ) e. RR+ /\ ( PellFund ` D ) =/= 1 ) -> ( ( log ` ( PellFund ` D ) ) / ( log ` ( PellFund ` D ) ) ) = 1 ) |
| 56 |
3 5 55
|
syl2anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( log ` ( PellFund ` D ) ) / ( log ` ( PellFund ` D ) ) ) = 1 ) |
| 57 |
54 44 56
|
3brtr4d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( log ` ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) < ( ( log ` ( PellFund ` D ) ) / ( log ` ( PellFund ` D ) ) ) ) |
| 58 |
|
reglogltb |
|- ( ( ( ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) e. RR+ /\ ( PellFund ` D ) e. RR+ ) /\ ( ( PellFund ` D ) e. RR+ /\ 1 < ( PellFund ` D ) ) ) -> ( ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) < ( PellFund ` D ) <-> ( ( log ` ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) < ( ( log ` ( PellFund ` D ) ) / ( log ` ( PellFund ` D ) ) ) ) ) |
| 59 |
46 3 3 48 58
|
syl22anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) < ( PellFund ` D ) <-> ( ( log ` ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) / ( log ` ( PellFund ` D ) ) ) < ( ( log ` ( PellFund ` D ) ) / ( log ` ( PellFund ` D ) ) ) ) ) |
| 60 |
57 59
|
mpbird |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) < ( PellFund ` D ) ) |
| 61 |
|
pellfund14gap |
|- ( ( D e. ( NN \ []NN ) /\ ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) e. ( Pell14QR ` D ) /\ ( 1 <_ ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) /\ ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) < ( PellFund ` D ) ) ) -> ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) = 1 ) |
| 62 |
17 25 51 60 61
|
syl112anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) = 1 ) |
| 63 |
31
|
negidd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) + -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) = 0 ) |
| 64 |
63
|
oveq2d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( PellFund ` D ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) + -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) = ( ( PellFund ` D ) ^ 0 ) ) |
| 65 |
3
|
rpcnd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( PellFund ` D ) e. CC ) |
| 66 |
3
|
rpne0d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( PellFund ` D ) =/= 0 ) |
| 67 |
|
expaddz |
|- ( ( ( ( PellFund ` D ) e. CC /\ ( PellFund ` D ) =/= 0 ) /\ ( ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) e. ZZ /\ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) e. ZZ ) ) -> ( ( PellFund ` D ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) + -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) = ( ( ( PellFund ` D ) ^ ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) |
| 68 |
65 66 8 13 67
|
syl22anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( PellFund ` D ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) + -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) = ( ( ( PellFund ` D ) ^ ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) |
| 69 |
65
|
exp0d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( PellFund ` D ) ^ 0 ) = 1 ) |
| 70 |
64 68 69
|
3eqtr3rd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> 1 = ( ( ( PellFund ` D ) ^ ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) |
| 71 |
62 70
|
eqtrd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) = ( ( ( PellFund ` D ) ^ ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) x. ( ( PellFund ` D ) ^ -u ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) ) |
| 72 |
10 12 15 16 71
|
mulcan2ad |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A = ( ( PellFund ` D ) ^ ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) |
| 73 |
|
oveq2 |
|- ( x = ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) -> ( ( PellFund ` D ) ^ x ) = ( ( PellFund ` D ) ^ ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) |
| 74 |
73
|
rspceeqv |
|- ( ( ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) e. ZZ /\ A = ( ( PellFund ` D ) ^ ( |_ ` ( ( log ` A ) / ( log ` ( PellFund ` D ) ) ) ) ) ) -> E. x e. ZZ A = ( ( PellFund ` D ) ^ x ) ) |
| 75 |
8 72 74
|
syl2anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> E. x e. ZZ A = ( ( PellFund ` D ) ^ x ) ) |