Metamath Proof Explorer


Theorem pellfund14

Description: Every positive Pell solution is a power of the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014)

Ref Expression
Assertion pellfund14 ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ∃ 𝑥 ∈ ℤ 𝐴 = ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) )

Proof

Step Hyp Ref Expression
1 pell14qrrp ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ+ )
2 pellfundrp ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ℝ+ )
3 2 adantr ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( PellFund ‘ 𝐷 ) ∈ ℝ+ )
4 pellfundne1 ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ≠ 1 )
5 4 adantr ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( PellFund ‘ 𝐷 ) ≠ 1 )
6 reglogcl ( ( 𝐴 ∈ ℝ+ ∧ ( PellFund ‘ 𝐷 ) ∈ ℝ+ ∧ ( PellFund ‘ 𝐷 ) ≠ 1 ) → ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ∈ ℝ )
7 1 3 5 6 syl3anc ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ∈ ℝ )
8 7 flcld ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ∈ ℤ )
9 pell14qrre ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ )
10 9 recnd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℂ )
11 3 8 rpexpcld ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ∈ ℝ+ )
12 11 rpcnd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ∈ ℂ )
13 8 znegcld ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ∈ ℤ )
14 3 13 rpexpcld ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ∈ ℝ+ )
15 14 rpcnd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ∈ ℂ )
16 14 rpne0d ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ≠ 0 )
17 simpl ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐷 ∈ ( ℕ ∖ ◻NN ) )
18 pell1qrss14 ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) )
19 pellfundex ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell1QR ‘ 𝐷 ) )
20 18 19 sseldd ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell14QR ‘ 𝐷 ) )
21 20 adantr ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( PellFund ‘ 𝐷 ) ∈ ( Pell14QR ‘ 𝐷 ) )
22 pell14qrexpcl ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( PellFund ‘ 𝐷 ) ∈ ( Pell14QR ‘ 𝐷 ) ∧ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ∈ ℤ ) → ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ∈ ( Pell14QR ‘ 𝐷 ) )
23 17 21 13 22 syl3anc ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ∈ ( Pell14QR ‘ 𝐷 ) )
24 pell14qrmulcl ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ∈ ( Pell14QR ‘ 𝐷 ) )
25 23 24 mpd3an3 ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ∈ ( Pell14QR ‘ 𝐷 ) )
26 1rp 1 ∈ ℝ+
27 26 a1i ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 1 ∈ ℝ+ )
28 modge0 ( ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ∈ ℝ ∧ 1 ∈ ℝ+ ) → 0 ≤ ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) mod 1 ) )
29 7 27 28 syl2anc ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 0 ≤ ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) mod 1 ) )
30 7 recnd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ∈ ℂ )
31 8 zcnd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ∈ ℂ )
32 30 31 negsubd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) + - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) − ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )
33 modfrac ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ∈ ℝ → ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) mod 1 ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) − ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )
34 7 33 syl ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) mod 1 ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) − ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )
35 32 34 eqtr4d ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) + - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) mod 1 ) )
36 29 35 breqtrrd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 0 ≤ ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) + - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )
37 reglog1 ( ( ( PellFund ‘ 𝐷 ) ∈ ℝ+ ∧ ( PellFund ‘ 𝐷 ) ≠ 1 ) → ( ( log ‘ 1 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) = 0 )
38 3 5 37 syl2anc ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( log ‘ 1 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) = 0 )
39 reglogmul ( ( 𝐴 ∈ ℝ+ ∧ ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ∈ ℝ+ ∧ ( ( PellFund ‘ 𝐷 ) ∈ ℝ+ ∧ ( PellFund ‘ 𝐷 ) ≠ 1 ) ) → ( ( log ‘ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) + ( ( log ‘ ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )
40 1 14 3 5 39 syl112anc ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( log ‘ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) + ( ( log ‘ ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )
41 reglogexpbas ( ( - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ∈ ℤ ∧ ( ( PellFund ‘ 𝐷 ) ∈ ℝ+ ∧ ( PellFund ‘ 𝐷 ) ≠ 1 ) ) → ( ( log ‘ ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) = - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )
42 13 3 5 41 syl12anc ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( log ‘ ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) = - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )
43 42 oveq2d ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) + ( ( log ‘ ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) + - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )
44 40 43 eqtrd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( log ‘ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) + - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )
45 36 38 44 3brtr4d ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( log ‘ 1 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ≤ ( ( log ‘ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) )
46 1 14 rpmulcld ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ∈ ℝ+ )
47 pellfundgt1 ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 < ( PellFund ‘ 𝐷 ) )
48 47 adantr ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 1 < ( PellFund ‘ 𝐷 ) )
49 reglogleb ( ( ( 1 ∈ ℝ+ ∧ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ∈ ℝ+ ) ∧ ( ( PellFund ‘ 𝐷 ) ∈ ℝ+ ∧ 1 < ( PellFund ‘ 𝐷 ) ) ) → ( 1 ≤ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ↔ ( ( log ‘ 1 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ≤ ( ( log ‘ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )
50 27 46 3 48 49 syl22anc ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 1 ≤ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ↔ ( ( log ‘ 1 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ≤ ( ( log ‘ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )
51 45 50 mpbird ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 1 ≤ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) )
52 modlt ( ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ∈ ℝ ∧ 1 ∈ ℝ+ ) → ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) mod 1 ) < 1 )
53 7 27 52 syl2anc ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) mod 1 ) < 1 )
54 35 53 eqbrtrd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) + - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) < 1 )
55 reglogbas ( ( ( PellFund ‘ 𝐷 ) ∈ ℝ+ ∧ ( PellFund ‘ 𝐷 ) ≠ 1 ) → ( ( log ‘ ( PellFund ‘ 𝐷 ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) = 1 )
56 3 5 55 syl2anc ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( log ‘ ( PellFund ‘ 𝐷 ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) = 1 )
57 54 44 56 3brtr4d ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( log ‘ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) < ( ( log ‘ ( PellFund ‘ 𝐷 ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) )
58 reglogltb ( ( ( ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ∈ ℝ+ ∧ ( PellFund ‘ 𝐷 ) ∈ ℝ+ ) ∧ ( ( PellFund ‘ 𝐷 ) ∈ ℝ+ ∧ 1 < ( PellFund ‘ 𝐷 ) ) ) → ( ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) < ( PellFund ‘ 𝐷 ) ↔ ( ( log ‘ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) < ( ( log ‘ ( PellFund ‘ 𝐷 ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )
59 46 3 3 48 58 syl22anc ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) < ( PellFund ‘ 𝐷 ) ↔ ( ( log ‘ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) < ( ( log ‘ ( PellFund ‘ 𝐷 ) ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) )
60 57 59 mpbird ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) < ( PellFund ‘ 𝐷 ) )
61 pellfund14gap ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( 1 ≤ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) ∧ ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) < ( PellFund ‘ 𝐷 ) ) ) → ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) = 1 )
62 17 25 51 60 61 syl112anc ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) = 1 )
63 31 negidd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) + - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) = 0 )
64 63 oveq2d ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) + - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) = ( ( PellFund ‘ 𝐷 ) ↑ 0 ) )
65 3 rpcnd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( PellFund ‘ 𝐷 ) ∈ ℂ )
66 3 rpne0d ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( PellFund ‘ 𝐷 ) ≠ 0 )
67 expaddz ( ( ( ( PellFund ‘ 𝐷 ) ∈ ℂ ∧ ( PellFund ‘ 𝐷 ) ≠ 0 ) ∧ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ∈ ℤ ∧ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ∈ ℤ ) ) → ( ( PellFund ‘ 𝐷 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) + - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) = ( ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) )
68 65 66 8 13 67 syl22anc ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) + - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) = ( ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) )
69 65 exp0d ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( PellFund ‘ 𝐷 ) ↑ 0 ) = 1 )
70 64 68 69 3eqtr3rd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 1 = ( ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) )
71 62 70 eqtrd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) = ( ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) · ( ( PellFund ‘ 𝐷 ) ↑ - ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) )
72 10 12 15 16 71 mulcan2ad ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 = ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )
73 oveq2 ( 𝑥 = ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) → ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) = ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) )
74 73 rspceeqv ( ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ∈ ℤ ∧ 𝐴 = ( ( PellFund ‘ 𝐷 ) ↑ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ ( PellFund ‘ 𝐷 ) ) ) ) ) ) → ∃ 𝑥 ∈ ℤ 𝐴 = ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) )
75 8 72 74 syl2anc ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ∃ 𝑥 ∈ ℤ 𝐴 = ( ( PellFund ‘ 𝐷 ) ↑ 𝑥 ) )