| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovex |  |-  ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) e. _V | 
						
							| 2 |  | eqid |  |-  ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) = ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) | 
						
							| 3 | 1 2 | fnmpti |  |-  ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) Fn ( NN0 X. ZZ ) | 
						
							| 4 | 3 | a1i |  |-  ( A e. ( ZZ>= ` 2 ) -> ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) Fn ( NN0 X. ZZ ) ) | 
						
							| 5 | 2 | rnmpt |  |-  ran ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) = { a | E. b e. ( NN0 X. ZZ ) a = ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) } | 
						
							| 6 |  | vex |  |-  c e. _V | 
						
							| 7 |  | vex |  |-  d e. _V | 
						
							| 8 | 6 7 | op1std |  |-  ( b = <. c , d >. -> ( 1st ` b ) = c ) | 
						
							| 9 | 6 7 | op2ndd |  |-  ( b = <. c , d >. -> ( 2nd ` b ) = d ) | 
						
							| 10 | 9 | oveq2d |  |-  ( b = <. c , d >. -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) | 
						
							| 11 | 8 10 | oveq12d |  |-  ( b = <. c , d >. -> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) ) | 
						
							| 12 | 11 | eqeq2d |  |-  ( b = <. c , d >. -> ( a = ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) <-> a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) ) ) | 
						
							| 13 | 12 | rexxp |  |-  ( E. b e. ( NN0 X. ZZ ) a = ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) <-> E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) ) | 
						
							| 14 | 13 | bicomi |  |-  ( E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) <-> E. b e. ( NN0 X. ZZ ) a = ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) | 
						
							| 15 | 14 | a1i |  |-  ( A e. ( ZZ>= ` 2 ) -> ( E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) <-> E. b e. ( NN0 X. ZZ ) a = ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ) | 
						
							| 16 | 15 | abbidv |  |-  ( A e. ( ZZ>= ` 2 ) -> { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } = { a | E. b e. ( NN0 X. ZZ ) a = ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) } ) | 
						
							| 17 | 5 16 | eqtr4id |  |-  ( A e. ( ZZ>= ` 2 ) -> ran ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) = { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } ) | 
						
							| 18 |  | fveq2 |  |-  ( b = c -> ( 1st ` b ) = ( 1st ` c ) ) | 
						
							| 19 |  | fveq2 |  |-  ( b = c -> ( 2nd ` b ) = ( 2nd ` c ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( b = c -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) | 
						
							| 21 | 18 20 | oveq12d |  |-  ( b = c -> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) = ( ( 1st ` c ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) ) | 
						
							| 22 |  | ovex |  |-  ( ( 1st ` c ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) e. _V | 
						
							| 23 | 21 2 22 | fvmpt |  |-  ( c e. ( NN0 X. ZZ ) -> ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` c ) = ( ( 1st ` c ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) ) | 
						
							| 24 | 23 | ad2antrl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` c ) = ( ( 1st ` c ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) ) | 
						
							| 25 |  | fveq2 |  |-  ( b = d -> ( 1st ` b ) = ( 1st ` d ) ) | 
						
							| 26 |  | fveq2 |  |-  ( b = d -> ( 2nd ` b ) = ( 2nd ` d ) ) | 
						
							| 27 | 26 | oveq2d |  |-  ( b = d -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` d ) ) ) | 
						
							| 28 | 25 27 | oveq12d |  |-  ( b = d -> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) = ( ( 1st ` d ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` d ) ) ) ) | 
						
							| 29 |  | ovex |  |-  ( ( 1st ` d ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` d ) ) ) e. _V | 
						
							| 30 | 28 2 29 | fvmpt |  |-  ( d e. ( NN0 X. ZZ ) -> ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` d ) = ( ( 1st ` d ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` d ) ) ) ) | 
						
							| 31 | 30 | ad2antll |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` d ) = ( ( 1st ` d ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` d ) ) ) ) | 
						
							| 32 | 24 31 | eqeq12d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` c ) = ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` d ) <-> ( ( 1st ` c ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) = ( ( 1st ` d ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` d ) ) ) ) ) | 
						
							| 33 |  | rmspecsqrtnq |  |-  ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) ) | 
						
							| 35 |  | nn0ssq |  |-  NN0 C_ QQ | 
						
							| 36 |  | xp1st |  |-  ( c e. ( NN0 X. ZZ ) -> ( 1st ` c ) e. NN0 ) | 
						
							| 37 | 36 | ad2antrl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( 1st ` c ) e. NN0 ) | 
						
							| 38 | 35 37 | sselid |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( 1st ` c ) e. QQ ) | 
						
							| 39 |  | xp2nd |  |-  ( c e. ( NN0 X. ZZ ) -> ( 2nd ` c ) e. ZZ ) | 
						
							| 40 | 39 | ad2antrl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( 2nd ` c ) e. ZZ ) | 
						
							| 41 |  | zq |  |-  ( ( 2nd ` c ) e. ZZ -> ( 2nd ` c ) e. QQ ) | 
						
							| 42 | 40 41 | syl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( 2nd ` c ) e. QQ ) | 
						
							| 43 |  | xp1st |  |-  ( d e. ( NN0 X. ZZ ) -> ( 1st ` d ) e. NN0 ) | 
						
							| 44 | 43 | ad2antll |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( 1st ` d ) e. NN0 ) | 
						
							| 45 | 35 44 | sselid |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( 1st ` d ) e. QQ ) | 
						
							| 46 |  | xp2nd |  |-  ( d e. ( NN0 X. ZZ ) -> ( 2nd ` d ) e. ZZ ) | 
						
							| 47 | 46 | ad2antll |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( 2nd ` d ) e. ZZ ) | 
						
							| 48 |  | zq |  |-  ( ( 2nd ` d ) e. ZZ -> ( 2nd ` d ) e. QQ ) | 
						
							| 49 | 47 48 | syl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( 2nd ` d ) e. QQ ) | 
						
							| 50 |  | qirropth |  |-  ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) /\ ( ( 1st ` c ) e. QQ /\ ( 2nd ` c ) e. QQ ) /\ ( ( 1st ` d ) e. QQ /\ ( 2nd ` d ) e. QQ ) ) -> ( ( ( 1st ` c ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) = ( ( 1st ` d ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` d ) ) ) <-> ( ( 1st ` c ) = ( 1st ` d ) /\ ( 2nd ` c ) = ( 2nd ` d ) ) ) ) | 
						
							| 51 | 34 38 42 45 49 50 | syl122anc |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( ( ( 1st ` c ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) = ( ( 1st ` d ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` d ) ) ) <-> ( ( 1st ` c ) = ( 1st ` d ) /\ ( 2nd ` c ) = ( 2nd ` d ) ) ) ) | 
						
							| 52 | 51 | biimpd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( ( ( 1st ` c ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) = ( ( 1st ` d ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` d ) ) ) -> ( ( 1st ` c ) = ( 1st ` d ) /\ ( 2nd ` c ) = ( 2nd ` d ) ) ) ) | 
						
							| 53 |  | xpopth |  |-  ( ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) -> ( ( ( 1st ` c ) = ( 1st ` d ) /\ ( 2nd ` c ) = ( 2nd ` d ) ) <-> c = d ) ) | 
						
							| 54 | 53 | adantl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( ( ( 1st ` c ) = ( 1st ` d ) /\ ( 2nd ` c ) = ( 2nd ` d ) ) <-> c = d ) ) | 
						
							| 55 | 52 54 | sylibd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( ( ( 1st ` c ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) = ( ( 1st ` d ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` d ) ) ) -> c = d ) ) | 
						
							| 56 | 32 55 | sylbid |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` c ) = ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` d ) -> c = d ) ) | 
						
							| 57 | 56 | ralrimivva |  |-  ( A e. ( ZZ>= ` 2 ) -> A. c e. ( NN0 X. ZZ ) A. d e. ( NN0 X. ZZ ) ( ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` c ) = ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` d ) -> c = d ) ) | 
						
							| 58 |  | dff1o6 |  |-  ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) : ( NN0 X. ZZ ) -1-1-onto-> { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } <-> ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) Fn ( NN0 X. ZZ ) /\ ran ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) = { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } /\ A. c e. ( NN0 X. ZZ ) A. d e. ( NN0 X. ZZ ) ( ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` c ) = ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` d ) -> c = d ) ) ) | 
						
							| 59 | 4 17 57 58 | syl3anbrc |  |-  ( A e. ( ZZ>= ` 2 ) -> ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) : ( NN0 X. ZZ ) -1-1-onto-> { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } ) |