| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( a = A -> ( a ^ 2 ) = ( A ^ 2 ) ) | 
						
							| 2 | 1 | fvoveq1d |  |-  ( a = A -> ( sqrt ` ( ( a ^ 2 ) - 1 ) ) = ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) | 
						
							| 3 | 2 | oveq1d |  |-  ( a = A -> ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) | 
						
							| 4 | 3 | oveq2d |  |-  ( a = A -> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) = ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) | 
						
							| 5 | 4 | mpteq2dv |  |-  ( a = A -> ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) = ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ) | 
						
							| 6 | 5 | cnveqd |  |-  ( a = A -> `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) = `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( a = A /\ n = N ) -> `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) = `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ) | 
						
							| 8 |  | id |  |-  ( a = A -> a = A ) | 
						
							| 9 | 8 2 | oveq12d |  |-  ( a = A -> ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) = ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ) | 
						
							| 10 |  | id |  |-  ( n = N -> n = N ) | 
						
							| 11 | 9 10 | oveqan12d |  |-  ( ( a = A /\ n = N ) -> ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ n ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) | 
						
							| 12 | 7 11 | fveq12d |  |-  ( ( a = A /\ n = N ) -> ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ n ) ) = ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) | 
						
							| 13 | 12 | fveq2d |  |-  ( ( a = A /\ n = N ) -> ( 1st ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ n ) ) ) = ( 1st ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) ) | 
						
							| 14 |  | df-rmx |  |-  rmX = ( a e. ( ZZ>= ` 2 ) , n e. ZZ |-> ( 1st ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ n ) ) ) ) | 
						
							| 15 |  | fvex |  |-  ( 1st ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) e. _V | 
						
							| 16 | 13 14 15 | ovmpoa |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) = ( 1st ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) ) |