| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csegle |
|- Seg<_ |
| 1 |
|
vp |
|- p |
| 2 |
|
vq |
|- q |
| 3 |
|
vn |
|- n |
| 4 |
|
cn |
|- NN |
| 5 |
|
va |
|- a |
| 6 |
|
cee |
|- EE |
| 7 |
3
|
cv |
|- n |
| 8 |
7 6
|
cfv |
|- ( EE ` n ) |
| 9 |
|
vb |
|- b |
| 10 |
|
vc |
|- c |
| 11 |
|
vd |
|- d |
| 12 |
1
|
cv |
|- p |
| 13 |
5
|
cv |
|- a |
| 14 |
9
|
cv |
|- b |
| 15 |
13 14
|
cop |
|- <. a , b >. |
| 16 |
12 15
|
wceq |
|- p = <. a , b >. |
| 17 |
2
|
cv |
|- q |
| 18 |
10
|
cv |
|- c |
| 19 |
11
|
cv |
|- d |
| 20 |
18 19
|
cop |
|- <. c , d >. |
| 21 |
17 20
|
wceq |
|- q = <. c , d >. |
| 22 |
|
vy |
|- y |
| 23 |
22
|
cv |
|- y |
| 24 |
|
cbtwn |
|- Btwn |
| 25 |
23 20 24
|
wbr |
|- y Btwn <. c , d >. |
| 26 |
|
ccgr |
|- Cgr |
| 27 |
18 23
|
cop |
|- <. c , y >. |
| 28 |
15 27 26
|
wbr |
|- <. a , b >. Cgr <. c , y >. |
| 29 |
25 28
|
wa |
|- ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) |
| 30 |
29 22 8
|
wrex |
|- E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) |
| 31 |
16 21 30
|
w3a |
|- ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) |
| 32 |
31 11 8
|
wrex |
|- E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) |
| 33 |
32 10 8
|
wrex |
|- E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) |
| 34 |
33 9 8
|
wrex |
|- E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) |
| 35 |
34 5 8
|
wrex |
|- E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) |
| 36 |
35 3 4
|
wrex |
|- E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) |
| 37 |
36 1 2
|
copab |
|- { <. p , q >. | E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) } |
| 38 |
0 37
|
wceq |
|- Seg<_ = { <. p , q >. | E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) } |