| Step | Hyp | Ref | Expression | 
						
							| 0 |  | csegle |  |-  Seg<_ | 
						
							| 1 |  | vp |  |-  p | 
						
							| 2 |  | vq |  |-  q | 
						
							| 3 |  | vn |  |-  n | 
						
							| 4 |  | cn |  |-  NN | 
						
							| 5 |  | va |  |-  a | 
						
							| 6 |  | cee |  |-  EE | 
						
							| 7 | 3 | cv |  |-  n | 
						
							| 8 | 7 6 | cfv |  |-  ( EE ` n ) | 
						
							| 9 |  | vb |  |-  b | 
						
							| 10 |  | vc |  |-  c | 
						
							| 11 |  | vd |  |-  d | 
						
							| 12 | 1 | cv |  |-  p | 
						
							| 13 | 5 | cv |  |-  a | 
						
							| 14 | 9 | cv |  |-  b | 
						
							| 15 | 13 14 | cop |  |-  <. a , b >. | 
						
							| 16 | 12 15 | wceq |  |-  p = <. a , b >. | 
						
							| 17 | 2 | cv |  |-  q | 
						
							| 18 | 10 | cv |  |-  c | 
						
							| 19 | 11 | cv |  |-  d | 
						
							| 20 | 18 19 | cop |  |-  <. c , d >. | 
						
							| 21 | 17 20 | wceq |  |-  q = <. c , d >. | 
						
							| 22 |  | vy |  |-  y | 
						
							| 23 | 22 | cv |  |-  y | 
						
							| 24 |  | cbtwn |  |-  Btwn | 
						
							| 25 | 23 20 24 | wbr |  |-  y Btwn <. c , d >. | 
						
							| 26 |  | ccgr |  |-  Cgr | 
						
							| 27 | 18 23 | cop |  |-  <. c , y >. | 
						
							| 28 | 15 27 26 | wbr |  |-  <. a , b >. Cgr <. c , y >. | 
						
							| 29 | 25 28 | wa |  |-  ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) | 
						
							| 30 | 29 22 8 | wrex |  |-  E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) | 
						
							| 31 | 16 21 30 | w3a |  |-  ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) | 
						
							| 32 | 31 11 8 | wrex |  |-  E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) | 
						
							| 33 | 32 10 8 | wrex |  |-  E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) | 
						
							| 34 | 33 9 8 | wrex |  |-  E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) | 
						
							| 35 | 34 5 8 | wrex |  |-  E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) | 
						
							| 36 | 35 3 4 | wrex |  |-  E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) | 
						
							| 37 | 36 1 2 | copab |  |-  { <. p , q >. | E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) } | 
						
							| 38 | 0 37 | wceq |  |-  Seg<_ = { <. p , q >. | E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) } |