Step |
Hyp |
Ref |
Expression |
0 |
|
csegle |
|- Seg<_ |
1 |
|
vp |
|- p |
2 |
|
vq |
|- q |
3 |
|
vn |
|- n |
4 |
|
cn |
|- NN |
5 |
|
va |
|- a |
6 |
|
cee |
|- EE |
7 |
3
|
cv |
|- n |
8 |
7 6
|
cfv |
|- ( EE ` n ) |
9 |
|
vb |
|- b |
10 |
|
vc |
|- c |
11 |
|
vd |
|- d |
12 |
1
|
cv |
|- p |
13 |
5
|
cv |
|- a |
14 |
9
|
cv |
|- b |
15 |
13 14
|
cop |
|- <. a , b >. |
16 |
12 15
|
wceq |
|- p = <. a , b >. |
17 |
2
|
cv |
|- q |
18 |
10
|
cv |
|- c |
19 |
11
|
cv |
|- d |
20 |
18 19
|
cop |
|- <. c , d >. |
21 |
17 20
|
wceq |
|- q = <. c , d >. |
22 |
|
vy |
|- y |
23 |
22
|
cv |
|- y |
24 |
|
cbtwn |
|- Btwn |
25 |
23 20 24
|
wbr |
|- y Btwn <. c , d >. |
26 |
|
ccgr |
|- Cgr |
27 |
18 23
|
cop |
|- <. c , y >. |
28 |
15 27 26
|
wbr |
|- <. a , b >. Cgr <. c , y >. |
29 |
25 28
|
wa |
|- ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) |
30 |
29 22 8
|
wrex |
|- E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) |
31 |
16 21 30
|
w3a |
|- ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) |
32 |
31 11 8
|
wrex |
|- E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) |
33 |
32 10 8
|
wrex |
|- E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) |
34 |
33 9 8
|
wrex |
|- E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) |
35 |
34 5 8
|
wrex |
|- E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) |
36 |
35 3 4
|
wrex |
|- E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) |
37 |
36 1 2
|
copab |
|- { <. p , q >. | E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) } |
38 |
0 37
|
wceq |
|- Seg<_ = { <. p , q >. | E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) } |