Metamath Proof Explorer


Definition df-segle

Description: Define the segment length comparison relationship. This relationship expresses that the segment A B is no longer than C D . In this section, we establish various properties of this relationship showing that it is a transitive, reflexive relationship on pairs of points that is substitutive under congruence. Definition 5.4 of Schwabhauser p. 41. (Contributed by Scott Fenton, 11-Oct-2013)

Ref Expression
Assertion df-segle Seg=pq|na𝔼nb𝔼nc𝔼nd𝔼np=abq=cdy𝔼nyBtwncdabCgrcy

Detailed syntax breakdown

Step Hyp Ref Expression
0 csegle classSeg
1 vp setvarp
2 vq setvarq
3 vn setvarn
4 cn class
5 va setvara
6 cee class𝔼
7 3 cv setvarn
8 7 6 cfv class𝔼n
9 vb setvarb
10 vc setvarc
11 vd setvard
12 1 cv setvarp
13 5 cv setvara
14 9 cv setvarb
15 13 14 cop classab
16 12 15 wceq wffp=ab
17 2 cv setvarq
18 10 cv setvarc
19 11 cv setvard
20 18 19 cop classcd
21 17 20 wceq wffq=cd
22 vy setvary
23 22 cv setvary
24 cbtwn classBtwn
25 23 20 24 wbr wffyBtwncd
26 ccgr classCgr
27 18 23 cop classcy
28 15 27 26 wbr wffabCgrcy
29 25 28 wa wffyBtwncdabCgrcy
30 29 22 8 wrex wffy𝔼nyBtwncdabCgrcy
31 16 21 30 w3a wffp=abq=cdy𝔼nyBtwncdabCgrcy
32 31 11 8 wrex wffd𝔼np=abq=cdy𝔼nyBtwncdabCgrcy
33 32 10 8 wrex wffc𝔼nd𝔼np=abq=cdy𝔼nyBtwncdabCgrcy
34 33 9 8 wrex wffb𝔼nc𝔼nd𝔼np=abq=cdy𝔼nyBtwncdabCgrcy
35 34 5 8 wrex wffa𝔼nb𝔼nc𝔼nd𝔼np=abq=cdy𝔼nyBtwncdabCgrcy
36 35 3 4 wrex wffna𝔼nb𝔼nc𝔼nd𝔼np=abq=cdy𝔼nyBtwncdabCgrcy
37 36 1 2 copab classpq|na𝔼nb𝔼nc𝔼nd𝔼np=abq=cdy𝔼nyBtwncdabCgrcy
38 0 37 wceq wffSeg=pq|na𝔼nb𝔼nc𝔼nd𝔼np=abq=cdy𝔼nyBtwncdabCgrcy