Metamath Proof Explorer


Definition df-segle

Description: Define the segment length comparison relationship. This relationship expresses that the segment A B is no longer than C D . In this section, we establish various properties of this relationship showing that it is a transitive, reflexive relationship on pairs of points that is substitutive under congruence. Definition 5.4 of Schwabhauser p. 41. (Contributed by Scott Fenton, 11-Oct-2013)

Ref Expression
Assertion df-segle Seg = p q | n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n p = a b q = c d y 𝔼 n y Btwn c d a b Cgr c y

Detailed syntax breakdown

Step Hyp Ref Expression
0 csegle class Seg
1 vp setvar p
2 vq setvar q
3 vn setvar n
4 cn class
5 va setvar a
6 cee class 𝔼
7 3 cv setvar n
8 7 6 cfv class 𝔼 n
9 vb setvar b
10 vc setvar c
11 vd setvar d
12 1 cv setvar p
13 5 cv setvar a
14 9 cv setvar b
15 13 14 cop class a b
16 12 15 wceq wff p = a b
17 2 cv setvar q
18 10 cv setvar c
19 11 cv setvar d
20 18 19 cop class c d
21 17 20 wceq wff q = c d
22 vy setvar y
23 22 cv setvar y
24 cbtwn class Btwn
25 23 20 24 wbr wff y Btwn c d
26 ccgr class Cgr
27 18 23 cop class c y
28 15 27 26 wbr wff a b Cgr c y
29 25 28 wa wff y Btwn c d a b Cgr c y
30 29 22 8 wrex wff y 𝔼 n y Btwn c d a b Cgr c y
31 16 21 30 w3a wff p = a b q = c d y 𝔼 n y Btwn c d a b Cgr c y
32 31 11 8 wrex wff d 𝔼 n p = a b q = c d y 𝔼 n y Btwn c d a b Cgr c y
33 32 10 8 wrex wff c 𝔼 n d 𝔼 n p = a b q = c d y 𝔼 n y Btwn c d a b Cgr c y
34 33 9 8 wrex wff b 𝔼 n c 𝔼 n d 𝔼 n p = a b q = c d y 𝔼 n y Btwn c d a b Cgr c y
35 34 5 8 wrex wff a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n p = a b q = c d y 𝔼 n y Btwn c d a b Cgr c y
36 35 3 4 wrex wff n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n p = a b q = c d y 𝔼 n y Btwn c d a b Cgr c y
37 36 1 2 copab class p q | n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n p = a b q = c d y 𝔼 n y Btwn c d a b Cgr c y
38 0 37 wceq wff Seg = p q | n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n p = a b q = c d y 𝔼 n y Btwn c d a b Cgr c y