Metamath Proof Explorer


Theorem brsegle

Description: Binary relation form of the segment comparison relationship. (Contributed by Scott Fenton, 11-Oct-2013)

Ref Expression
Assertion brsegle N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Seg C D y 𝔼 N y Btwn C D A B Cgr C y

Proof

Step Hyp Ref Expression
1 opex A B V
2 opex C D V
3 eqeq1 p = A B p = a b A B = a b
4 eqcom A B = a b a b = A B
5 3 4 bitrdi p = A B p = a b a b = A B
6 5 3anbi1d p = A B p = a b q = c d y 𝔼 n y Btwn c d a b Cgr c y a b = A B q = c d y 𝔼 n y Btwn c d a b Cgr c y
7 6 rexbidv p = A B d 𝔼 n p = a b q = c d y 𝔼 n y Btwn c d a b Cgr c y d 𝔼 n a b = A B q = c d y 𝔼 n y Btwn c d a b Cgr c y
8 7 2rexbidv p = A B b 𝔼 n c 𝔼 n d 𝔼 n p = a b q = c d y 𝔼 n y Btwn c d a b Cgr c y b 𝔼 n c 𝔼 n d 𝔼 n a b = A B q = c d y 𝔼 n y Btwn c d a b Cgr c y
9 8 2rexbidv p = A B n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n p = a b q = c d y 𝔼 n y Btwn c d a b Cgr c y n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a b = A B q = c d y 𝔼 n y Btwn c d a b Cgr c y
10 eqeq1 q = C D q = c d C D = c d
11 eqcom C D = c d c d = C D
12 10 11 bitrdi q = C D q = c d c d = C D
13 12 3anbi2d q = C D a b = A B q = c d y 𝔼 n y Btwn c d a b Cgr c y a b = A B c d = C D y 𝔼 n y Btwn c d a b Cgr c y
14 13 rexbidv q = C D d 𝔼 n a b = A B q = c d y 𝔼 n y Btwn c d a b Cgr c y d 𝔼 n a b = A B c d = C D y 𝔼 n y Btwn c d a b Cgr c y
15 14 2rexbidv q = C D b 𝔼 n c 𝔼 n d 𝔼 n a b = A B q = c d y 𝔼 n y Btwn c d a b Cgr c y b 𝔼 n c 𝔼 n d 𝔼 n a b = A B c d = C D y 𝔼 n y Btwn c d a b Cgr c y
16 15 2rexbidv q = C D n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a b = A B q = c d y 𝔼 n y Btwn c d a b Cgr c y n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a b = A B c d = C D y 𝔼 n y Btwn c d a b Cgr c y
17 df-segle Seg = p q | n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n p = a b q = c d y 𝔼 n y Btwn c d a b Cgr c y
18 1 2 9 16 17 brab A B Seg C D n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a b = A B c d = C D y 𝔼 n y Btwn c d a b Cgr c y
19 vex a V
20 vex b V
21 19 20 opth a b = A B a = A b = B
22 vex c V
23 vex d V
24 22 23 opth c d = C D c = C d = D
25 biid y 𝔼 n y Btwn c d a b Cgr c y y 𝔼 n y Btwn c d a b Cgr c y
26 21 24 25 3anbi123i a b = A B c d = C D y 𝔼 n y Btwn c d a b Cgr c y a = A b = B c = C d = D y 𝔼 n y Btwn c d a b Cgr c y
27 26 2rexbii c 𝔼 n d 𝔼 n a b = A B c d = C D y 𝔼 n y Btwn c d a b Cgr c y c 𝔼 n d 𝔼 n a = A b = B c = C d = D y 𝔼 n y Btwn c d a b Cgr c y
28 27 2rexbii a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a b = A B c d = C D y 𝔼 n y Btwn c d a b Cgr c y a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a = A b = B c = C d = D y 𝔼 n y Btwn c d a b Cgr c y
29 28 rexbii n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a b = A B c d = C D y 𝔼 n y Btwn c d a b Cgr c y n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a = A b = B c = C d = D y 𝔼 n y Btwn c d a b Cgr c y
30 simpl2l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n A 𝔼 N
31 30 ad2antrl a = A b = B c = C d = D N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n A 𝔼 n B 𝔼 n C 𝔼 n D 𝔼 n A 𝔼 N
32 eleenn A 𝔼 N N
33 31 32 syl a = A b = B c = C d = D N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n A 𝔼 n B 𝔼 n C 𝔼 n D 𝔼 n N
34 simprlr a = A b = B c = C d = D N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n A 𝔼 n B 𝔼 n C 𝔼 n D 𝔼 n n
35 simprll N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n A 𝔼 n B 𝔼 n C 𝔼 n D 𝔼 n A 𝔼 n
36 35 adantl a = A b = B c = C d = D N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n A 𝔼 n B 𝔼 n C 𝔼 n D 𝔼 n A 𝔼 n
37 axdimuniq N A 𝔼 N n A 𝔼 n N = n
38 33 31 34 36 37 syl22anc a = A b = B c = C d = D N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n A 𝔼 n B 𝔼 n C 𝔼 n D 𝔼 n N = n
39 38 fveq2d a = A b = B c = C d = D N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n A 𝔼 n B 𝔼 n C 𝔼 n D 𝔼 n 𝔼 N = 𝔼 n
40 39 rexeqdv a = A b = B c = C d = D N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n A 𝔼 n B 𝔼 n C 𝔼 n D 𝔼 n y 𝔼 N y Btwn C D A B Cgr C y y 𝔼 n y Btwn C D A B Cgr C y
41 40 exbiri a = A b = B c = C d = D N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n A 𝔼 n B 𝔼 n C 𝔼 n D 𝔼 n y 𝔼 n y Btwn C D A B Cgr C y y 𝔼 N y Btwn C D A B Cgr C y
42 41 anassrs a = A b = B c = C d = D N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n A 𝔼 n B 𝔼 n C 𝔼 n D 𝔼 n y 𝔼 n y Btwn C D A B Cgr C y y 𝔼 N y Btwn C D A B Cgr C y
43 eleq1 a = A a 𝔼 n A 𝔼 n
44 eleq1 b = B b 𝔼 n B 𝔼 n
45 43 44 bi2anan9 a = A b = B a 𝔼 n b 𝔼 n A 𝔼 n B 𝔼 n
46 eleq1 c = C c 𝔼 n C 𝔼 n
47 eleq1 d = D d 𝔼 n D 𝔼 n
48 46 47 bi2anan9 c = C d = D c 𝔼 n d 𝔼 n C 𝔼 n D 𝔼 n
49 45 48 bi2anan9 a = A b = B c = C d = D a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n A 𝔼 n B 𝔼 n C 𝔼 n D 𝔼 n
50 49 anbi2d a = A b = B c = C d = D N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n A 𝔼 n B 𝔼 n C 𝔼 n D 𝔼 n
51 opeq12 a = A b = B a b = A B
52 51 breq1d a = A b = B a b Cgr c y A B Cgr c y
53 52 anbi2d a = A b = B y Btwn c d a b Cgr c y y Btwn c d A B Cgr c y
54 opeq12 c = C d = D c d = C D
55 54 breq2d c = C d = D y Btwn c d y Btwn C D
56 opeq1 c = C c y = C y
57 56 breq2d c = C A B Cgr c y A B Cgr C y
58 57 adantr c = C d = D A B Cgr c y A B Cgr C y
59 55 58 anbi12d c = C d = D y Btwn c d A B Cgr c y y Btwn C D A B Cgr C y
60 53 59 sylan9bb a = A b = B c = C d = D y Btwn c d a b Cgr c y y Btwn C D A B Cgr C y
61 60 rexbidv a = A b = B c = C d = D y 𝔼 n y Btwn c d a b Cgr c y y 𝔼 n y Btwn C D A B Cgr C y
62 61 imbi1d a = A b = B c = C d = D y 𝔼 n y Btwn c d a b Cgr c y y 𝔼 N y Btwn C D A B Cgr C y y 𝔼 n y Btwn C D A B Cgr C y y 𝔼 N y Btwn C D A B Cgr C y
63 42 50 62 3imtr4d a = A b = B c = C d = D N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n y 𝔼 n y Btwn c d a b Cgr c y y 𝔼 N y Btwn C D A B Cgr C y
64 63 com12 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a = A b = B c = C d = D y 𝔼 n y Btwn c d a b Cgr c y y 𝔼 N y Btwn C D A B Cgr C y
65 64 expd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a = A b = B c = C d = D y 𝔼 n y Btwn c d a b Cgr c y y 𝔼 N y Btwn C D A B Cgr C y
66 65 3impd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a = A b = B c = C d = D y 𝔼 n y Btwn c d a b Cgr c y y 𝔼 N y Btwn C D A B Cgr C y
67 66 expr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a = A b = B c = C d = D y 𝔼 n y Btwn c d a b Cgr c y y 𝔼 N y Btwn C D A B Cgr C y
68 67 rexlimdvv N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a = A b = B c = C d = D y 𝔼 n y Btwn c d a b Cgr c y y 𝔼 N y Btwn C D A B Cgr C y
69 68 rexlimdvva N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a = A b = B c = C d = D y 𝔼 n y Btwn c d a b Cgr c y y 𝔼 N y Btwn C D A B Cgr C y
70 69 rexlimdva N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a = A b = B c = C d = D y 𝔼 n y Btwn c d a b Cgr c y y 𝔼 N y Btwn C D A B Cgr C y
71 29 70 syl5bi N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a b = A B c d = C D y 𝔼 n y Btwn c d a b Cgr c y y 𝔼 N y Btwn C D A B Cgr C y
72 simpl1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N y 𝔼 N y Btwn C D A B Cgr C y N
73 simpl2l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N y 𝔼 N y Btwn C D A B Cgr C y A 𝔼 N
74 simpl2r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N y 𝔼 N y Btwn C D A B Cgr C y B 𝔼 N
75 simpl3l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N y 𝔼 N y Btwn C D A B Cgr C y C 𝔼 N
76 simpl3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N y 𝔼 N y Btwn C D A B Cgr C y D 𝔼 N
77 eqidd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N y 𝔼 N y Btwn C D A B Cgr C y A B = A B
78 eqidd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N y 𝔼 N y Btwn C D A B Cgr C y C D = C D
79 simpr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N y 𝔼 N y Btwn C D A B Cgr C y y 𝔼 N y Btwn C D A B Cgr C y
80 opeq1 c = C c d = C d
81 80 eqeq1d c = C c d = C D C d = C D
82 80 breq2d c = C y Btwn c d y Btwn C d
83 82 57 anbi12d c = C y Btwn c d A B Cgr c y y Btwn C d A B Cgr C y
84 83 rexbidv c = C y 𝔼 N y Btwn c d A B Cgr c y y 𝔼 N y Btwn C d A B Cgr C y
85 81 84 3anbi23d c = C A B = A B c d = C D y 𝔼 N y Btwn c d A B Cgr c y A B = A B C d = C D y 𝔼 N y Btwn C d A B Cgr C y
86 opeq2 d = D C d = C D
87 86 eqeq1d d = D C d = C D C D = C D
88 86 breq2d d = D y Btwn C d y Btwn C D
89 88 anbi1d d = D y Btwn C d A B Cgr C y y Btwn C D A B Cgr C y
90 89 rexbidv d = D y 𝔼 N y Btwn C d A B Cgr C y y 𝔼 N y Btwn C D A B Cgr C y
91 87 90 3anbi23d d = D A B = A B C d = C D y 𝔼 N y Btwn C d A B Cgr C y A B = A B C D = C D y 𝔼 N y Btwn C D A B Cgr C y
92 85 91 rspc2ev C 𝔼 N D 𝔼 N A B = A B C D = C D y 𝔼 N y Btwn C D A B Cgr C y c 𝔼 N d 𝔼 N A B = A B c d = C D y 𝔼 N y Btwn c d A B Cgr c y
93 75 76 77 78 79 92 syl113anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N y 𝔼 N y Btwn C D A B Cgr C y c 𝔼 N d 𝔼 N A B = A B c d = C D y 𝔼 N y Btwn c d A B Cgr c y
94 opeq1 a = A a b = A b
95 94 eqeq1d a = A a b = A B A b = A B
96 94 breq1d a = A a b Cgr c y A b Cgr c y
97 96 anbi2d a = A y Btwn c d a b Cgr c y y Btwn c d A b Cgr c y
98 97 rexbidv a = A y 𝔼 N y Btwn c d a b Cgr c y y 𝔼 N y Btwn c d A b Cgr c y
99 95 98 3anbi13d a = A a b = A B c d = C D y 𝔼 N y Btwn c d a b Cgr c y A b = A B c d = C D y 𝔼 N y Btwn c d A b Cgr c y
100 99 2rexbidv a = A c 𝔼 N d 𝔼 N a b = A B c d = C D y 𝔼 N y Btwn c d a b Cgr c y c 𝔼 N d 𝔼 N A b = A B c d = C D y 𝔼 N y Btwn c d A b Cgr c y
101 opeq2 b = B A b = A B
102 101 eqeq1d b = B A b = A B A B = A B
103 101 breq1d b = B A b Cgr c y A B Cgr c y
104 103 anbi2d b = B y Btwn c d A b Cgr c y y Btwn c d A B Cgr c y
105 104 rexbidv b = B y 𝔼 N y Btwn c d A b Cgr c y y 𝔼 N y Btwn c d A B Cgr c y
106 102 105 3anbi13d b = B A b = A B c d = C D y 𝔼 N y Btwn c d A b Cgr c y A B = A B c d = C D y 𝔼 N y Btwn c d A B Cgr c y
107 106 2rexbidv b = B c 𝔼 N d 𝔼 N A b = A B c d = C D y 𝔼 N y Btwn c d A b Cgr c y c 𝔼 N d 𝔼 N A B = A B c d = C D y 𝔼 N y Btwn c d A B Cgr c y
108 100 107 rspc2ev A 𝔼 N B 𝔼 N c 𝔼 N d 𝔼 N A B = A B c d = C D y 𝔼 N y Btwn c d A B Cgr c y a 𝔼 N b 𝔼 N c 𝔼 N d 𝔼 N a b = A B c d = C D y 𝔼 N y Btwn c d a b Cgr c y
109 73 74 93 108 syl3anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N y 𝔼 N y Btwn C D A B Cgr C y a 𝔼 N b 𝔼 N c 𝔼 N d 𝔼 N a b = A B c d = C D y 𝔼 N y Btwn c d a b Cgr c y
110 fveq2 n = N 𝔼 n = 𝔼 N
111 110 rexeqdv n = N y 𝔼 n y Btwn c d a b Cgr c y y 𝔼 N y Btwn c d a b Cgr c y
112 111 3anbi3d n = N a b = A B c d = C D y 𝔼 n y Btwn c d a b Cgr c y a b = A B c d = C D y 𝔼 N y Btwn c d a b Cgr c y
113 110 112 rexeqbidv n = N d 𝔼 n a b = A B c d = C D y 𝔼 n y Btwn c d a b Cgr c y d 𝔼 N a b = A B c d = C D y 𝔼 N y Btwn c d a b Cgr c y
114 110 113 rexeqbidv n = N c 𝔼 n d 𝔼 n a b = A B c d = C D y 𝔼 n y Btwn c d a b Cgr c y c 𝔼 N d 𝔼 N a b = A B c d = C D y 𝔼 N y Btwn c d a b Cgr c y
115 110 114 rexeqbidv n = N b 𝔼 n c 𝔼 n d 𝔼 n a b = A B c d = C D y 𝔼 n y Btwn c d a b Cgr c y b 𝔼 N c 𝔼 N d 𝔼 N a b = A B c d = C D y 𝔼 N y Btwn c d a b Cgr c y
116 110 115 rexeqbidv n = N a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a b = A B c d = C D y 𝔼 n y Btwn c d a b Cgr c y a 𝔼 N b 𝔼 N c 𝔼 N d 𝔼 N a b = A B c d = C D y 𝔼 N y Btwn c d a b Cgr c y
117 116 rspcev N a 𝔼 N b 𝔼 N c 𝔼 N d 𝔼 N a b = A B c d = C D y 𝔼 N y Btwn c d a b Cgr c y n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a b = A B c d = C D y 𝔼 n y Btwn c d a b Cgr c y
118 72 109 117 syl2anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N y 𝔼 N y Btwn C D A B Cgr C y n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a b = A B c d = C D y 𝔼 n y Btwn c d a b Cgr c y
119 118 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N y 𝔼 N y Btwn C D A B Cgr C y n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a b = A B c d = C D y 𝔼 n y Btwn c d a b Cgr c y
120 71 119 impbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n a b = A B c d = C D y 𝔼 n y Btwn c d a b Cgr c y y 𝔼 N y Btwn C D A B Cgr C y
121 18 120 syl5bb N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Seg C D y 𝔼 N y Btwn C D A B Cgr C y