| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opex |  |-  <. A , B >. e. _V | 
						
							| 2 |  | opex |  |-  <. C , D >. e. _V | 
						
							| 3 |  | eqeq1 |  |-  ( p = <. A , B >. -> ( p = <. a , b >. <-> <. A , B >. = <. a , b >. ) ) | 
						
							| 4 |  | eqcom |  |-  ( <. A , B >. = <. a , b >. <-> <. a , b >. = <. A , B >. ) | 
						
							| 5 | 3 4 | bitrdi |  |-  ( p = <. A , B >. -> ( p = <. a , b >. <-> <. a , b >. = <. A , B >. ) ) | 
						
							| 6 | 5 | 3anbi1d |  |-  ( p = <. A , B >. -> ( ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> ( <. a , b >. = <. A , B >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) | 
						
							| 7 | 6 | rexbidv |  |-  ( p = <. A , B >. -> ( E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) | 
						
							| 8 | 7 | 2rexbidv |  |-  ( p = <. A , B >. -> ( E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) | 
						
							| 9 | 8 | 2rexbidv |  |-  ( p = <. A , B >. -> ( E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) | 
						
							| 10 |  | eqeq1 |  |-  ( q = <. C , D >. -> ( q = <. c , d >. <-> <. C , D >. = <. c , d >. ) ) | 
						
							| 11 |  | eqcom |  |-  ( <. C , D >. = <. c , d >. <-> <. c , d >. = <. C , D >. ) | 
						
							| 12 | 10 11 | bitrdi |  |-  ( q = <. C , D >. -> ( q = <. c , d >. <-> <. c , d >. = <. C , D >. ) ) | 
						
							| 13 | 12 | 3anbi2d |  |-  ( q = <. C , D >. -> ( ( <. a , b >. = <. A , B >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) | 
						
							| 14 | 13 | rexbidv |  |-  ( q = <. C , D >. -> ( E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) | 
						
							| 15 | 14 | 2rexbidv |  |-  ( q = <. C , D >. -> ( E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) | 
						
							| 16 | 15 | 2rexbidv |  |-  ( q = <. C , D >. -> ( E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) | 
						
							| 17 |  | df-segle |  |-  Seg<_ = { <. p , q >. | E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) } | 
						
							| 18 | 1 2 9 16 17 | brab |  |-  ( <. A , B >. Seg<_ <. C , D >. <-> E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) | 
						
							| 19 |  | vex |  |-  a e. _V | 
						
							| 20 |  | vex |  |-  b e. _V | 
						
							| 21 | 19 20 | opth |  |-  ( <. a , b >. = <. A , B >. <-> ( a = A /\ b = B ) ) | 
						
							| 22 |  | vex |  |-  c e. _V | 
						
							| 23 |  | vex |  |-  d e. _V | 
						
							| 24 | 22 23 | opth |  |-  ( <. c , d >. = <. C , D >. <-> ( c = C /\ d = D ) ) | 
						
							| 25 |  | biid |  |-  ( E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) <-> E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) | 
						
							| 26 | 21 24 25 | 3anbi123i |  |-  ( ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) | 
						
							| 27 | 26 | 2rexbii |  |-  ( E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) | 
						
							| 28 | 27 | 2rexbii |  |-  ( E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) | 
						
							| 29 | 28 | rexbii |  |-  ( E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) | 
						
							| 30 |  | simpl2l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) -> A e. ( EE ` N ) ) | 
						
							| 31 | 30 | ad2antrl |  |-  ( ( ( a = A /\ ( b = B /\ ( c = C /\ d = D ) ) ) /\ ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 32 |  | eleenn |  |-  ( A e. ( EE ` N ) -> N e. NN ) | 
						
							| 33 | 31 32 | syl |  |-  ( ( ( a = A /\ ( b = B /\ ( c = C /\ d = D ) ) ) /\ ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) ) -> N e. NN ) | 
						
							| 34 |  | simprlr |  |-  ( ( ( a = A /\ ( b = B /\ ( c = C /\ d = D ) ) ) /\ ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) ) -> n e. NN ) | 
						
							| 35 |  | simprll |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) -> A e. ( EE ` n ) ) | 
						
							| 36 | 35 | adantl |  |-  ( ( ( a = A /\ ( b = B /\ ( c = C /\ d = D ) ) ) /\ ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) ) -> A e. ( EE ` n ) ) | 
						
							| 37 |  | axdimuniq |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) ) /\ ( n e. NN /\ A e. ( EE ` n ) ) ) -> N = n ) | 
						
							| 38 | 33 31 34 36 37 | syl22anc |  |-  ( ( ( a = A /\ ( b = B /\ ( c = C /\ d = D ) ) ) /\ ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) ) -> N = n ) | 
						
							| 39 | 38 | fveq2d |  |-  ( ( ( a = A /\ ( b = B /\ ( c = C /\ d = D ) ) ) /\ ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) ) -> ( EE ` N ) = ( EE ` n ) ) | 
						
							| 40 | 39 | rexeqdv |  |-  ( ( ( a = A /\ ( b = B /\ ( c = C /\ d = D ) ) ) /\ ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) ) -> ( E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) <-> E. y e. ( EE ` n ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) | 
						
							| 41 | 40 | exbiri |  |-  ( ( a = A /\ ( b = B /\ ( c = C /\ d = D ) ) ) -> ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) -> ( E. y e. ( EE ` n ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) ) | 
						
							| 42 | 41 | anassrs |  |-  ( ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) ) -> ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) -> ( E. y e. ( EE ` n ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) ) | 
						
							| 43 |  | eleq1 |  |-  ( a = A -> ( a e. ( EE ` n ) <-> A e. ( EE ` n ) ) ) | 
						
							| 44 |  | eleq1 |  |-  ( b = B -> ( b e. ( EE ` n ) <-> B e. ( EE ` n ) ) ) | 
						
							| 45 | 43 44 | bi2anan9 |  |-  ( ( a = A /\ b = B ) -> ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) ) <-> ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) ) ) | 
						
							| 46 |  | eleq1 |  |-  ( c = C -> ( c e. ( EE ` n ) <-> C e. ( EE ` n ) ) ) | 
						
							| 47 |  | eleq1 |  |-  ( d = D -> ( d e. ( EE ` n ) <-> D e. ( EE ` n ) ) ) | 
						
							| 48 | 46 47 | bi2anan9 |  |-  ( ( c = C /\ d = D ) -> ( ( c e. ( EE ` n ) /\ d e. ( EE ` n ) ) <-> ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) | 
						
							| 49 | 45 48 | bi2anan9 |  |-  ( ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) ) -> ( ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ ( c e. ( EE ` n ) /\ d e. ( EE ` n ) ) ) <-> ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) ) | 
						
							| 50 | 49 | anbi2d |  |-  ( ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) ) -> ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ ( c e. ( EE ` n ) /\ d e. ( EE ` n ) ) ) ) <-> ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) ) ) | 
						
							| 51 |  | opeq12 |  |-  ( ( a = A /\ b = B ) -> <. a , b >. = <. A , B >. ) | 
						
							| 52 | 51 | breq1d |  |-  ( ( a = A /\ b = B ) -> ( <. a , b >. Cgr <. c , y >. <-> <. A , B >. Cgr <. c , y >. ) ) | 
						
							| 53 | 52 | anbi2d |  |-  ( ( a = A /\ b = B ) -> ( ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) <-> ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) ) ) | 
						
							| 54 |  | opeq12 |  |-  ( ( c = C /\ d = D ) -> <. c , d >. = <. C , D >. ) | 
						
							| 55 | 54 | breq2d |  |-  ( ( c = C /\ d = D ) -> ( y Btwn <. c , d >. <-> y Btwn <. C , D >. ) ) | 
						
							| 56 |  | opeq1 |  |-  ( c = C -> <. c , y >. = <. C , y >. ) | 
						
							| 57 | 56 | breq2d |  |-  ( c = C -> ( <. A , B >. Cgr <. c , y >. <-> <. A , B >. Cgr <. C , y >. ) ) | 
						
							| 58 | 57 | adantr |  |-  ( ( c = C /\ d = D ) -> ( <. A , B >. Cgr <. c , y >. <-> <. A , B >. Cgr <. C , y >. ) ) | 
						
							| 59 | 55 58 | anbi12d |  |-  ( ( c = C /\ d = D ) -> ( ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) <-> ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) | 
						
							| 60 | 53 59 | sylan9bb |  |-  ( ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) ) -> ( ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) <-> ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) | 
						
							| 61 | 60 | rexbidv |  |-  ( ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) ) -> ( E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) <-> E. y e. ( EE ` n ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) | 
						
							| 62 | 61 | imbi1d |  |-  ( ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) ) -> ( ( E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) <-> ( E. y e. ( EE ` n ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) ) | 
						
							| 63 | 42 50 62 | 3imtr4d |  |-  ( ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) ) -> ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ ( c e. ( EE ` n ) /\ d e. ( EE ` n ) ) ) ) -> ( E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) ) | 
						
							| 64 | 63 | com12 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ ( c e. ( EE ` n ) /\ d e. ( EE ` n ) ) ) ) -> ( ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) ) -> ( E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) ) | 
						
							| 65 | 64 | expd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ ( c e. ( EE ` n ) /\ d e. ( EE ` n ) ) ) ) -> ( ( a = A /\ b = B ) -> ( ( c = C /\ d = D ) -> ( E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) ) ) | 
						
							| 66 | 65 | 3impd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ ( c e. ( EE ` n ) /\ d e. ( EE ` n ) ) ) ) -> ( ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) | 
						
							| 67 | 66 | expr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( a e. ( EE ` n ) /\ b e. ( EE ` n ) ) ) -> ( ( c e. ( EE ` n ) /\ d e. ( EE ` n ) ) -> ( ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) ) | 
						
							| 68 | 67 | rexlimdvv |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( a e. ( EE ` n ) /\ b e. ( EE ` n ) ) ) -> ( E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) | 
						
							| 69 | 68 | rexlimdvva |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) -> ( E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) | 
						
							| 70 | 69 | rexlimdva |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) | 
						
							| 71 | 29 70 | biimtrid |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) | 
						
							| 72 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> N e. NN ) | 
						
							| 73 |  | simpl2l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> A e. ( EE ` N ) ) | 
						
							| 74 |  | simpl2r |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> B e. ( EE ` N ) ) | 
						
							| 75 |  | simpl3l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> C e. ( EE ` N ) ) | 
						
							| 76 |  | simpl3r |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> D e. ( EE ` N ) ) | 
						
							| 77 |  | eqidd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> <. A , B >. = <. A , B >. ) | 
						
							| 78 |  | eqidd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> <. C , D >. = <. C , D >. ) | 
						
							| 79 |  | simpr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) | 
						
							| 80 |  | opeq1 |  |-  ( c = C -> <. c , d >. = <. C , d >. ) | 
						
							| 81 | 80 | eqeq1d |  |-  ( c = C -> ( <. c , d >. = <. C , D >. <-> <. C , d >. = <. C , D >. ) ) | 
						
							| 82 | 80 | breq2d |  |-  ( c = C -> ( y Btwn <. c , d >. <-> y Btwn <. C , d >. ) ) | 
						
							| 83 | 82 57 | anbi12d |  |-  ( c = C -> ( ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) <-> ( y Btwn <. C , d >. /\ <. A , B >. Cgr <. C , y >. ) ) ) | 
						
							| 84 | 83 | rexbidv |  |-  ( c = C -> ( E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) <-> E. y e. ( EE ` N ) ( y Btwn <. C , d >. /\ <. A , B >. Cgr <. C , y >. ) ) ) | 
						
							| 85 | 81 84 | 3anbi23d |  |-  ( c = C -> ( ( <. A , B >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) ) <-> ( <. A , B >. = <. A , B >. /\ <. C , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. C , d >. /\ <. A , B >. Cgr <. C , y >. ) ) ) ) | 
						
							| 86 |  | opeq2 |  |-  ( d = D -> <. C , d >. = <. C , D >. ) | 
						
							| 87 | 86 | eqeq1d |  |-  ( d = D -> ( <. C , d >. = <. C , D >. <-> <. C , D >. = <. C , D >. ) ) | 
						
							| 88 | 86 | breq2d |  |-  ( d = D -> ( y Btwn <. C , d >. <-> y Btwn <. C , D >. ) ) | 
						
							| 89 | 88 | anbi1d |  |-  ( d = D -> ( ( y Btwn <. C , d >. /\ <. A , B >. Cgr <. C , y >. ) <-> ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) | 
						
							| 90 | 89 | rexbidv |  |-  ( d = D -> ( E. y e. ( EE ` N ) ( y Btwn <. C , d >. /\ <. A , B >. Cgr <. C , y >. ) <-> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) | 
						
							| 91 | 87 90 | 3anbi23d |  |-  ( d = D -> ( ( <. A , B >. = <. A , B >. /\ <. C , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. C , d >. /\ <. A , B >. Cgr <. C , y >. ) ) <-> ( <. A , B >. = <. A , B >. /\ <. C , D >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) ) | 
						
							| 92 | 85 91 | rspc2ev |  |-  ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ ( <. A , B >. = <. A , B >. /\ <. C , D >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) -> E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. A , B >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) ) ) | 
						
							| 93 | 75 76 77 78 79 92 | syl113anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. A , B >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) ) ) | 
						
							| 94 |  | opeq1 |  |-  ( a = A -> <. a , b >. = <. A , b >. ) | 
						
							| 95 | 94 | eqeq1d |  |-  ( a = A -> ( <. a , b >. = <. A , B >. <-> <. A , b >. = <. A , B >. ) ) | 
						
							| 96 | 94 | breq1d |  |-  ( a = A -> ( <. a , b >. Cgr <. c , y >. <-> <. A , b >. Cgr <. c , y >. ) ) | 
						
							| 97 | 96 | anbi2d |  |-  ( a = A -> ( ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) <-> ( y Btwn <. c , d >. /\ <. A , b >. Cgr <. c , y >. ) ) ) | 
						
							| 98 | 97 | rexbidv |  |-  ( a = A -> ( E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) <-> E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , b >. Cgr <. c , y >. ) ) ) | 
						
							| 99 | 95 98 | 3anbi13d |  |-  ( a = A -> ( ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> ( <. A , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , b >. Cgr <. c , y >. ) ) ) ) | 
						
							| 100 | 99 | 2rexbidv |  |-  ( a = A -> ( E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. A , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , b >. Cgr <. c , y >. ) ) ) ) | 
						
							| 101 |  | opeq2 |  |-  ( b = B -> <. A , b >. = <. A , B >. ) | 
						
							| 102 | 101 | eqeq1d |  |-  ( b = B -> ( <. A , b >. = <. A , B >. <-> <. A , B >. = <. A , B >. ) ) | 
						
							| 103 | 101 | breq1d |  |-  ( b = B -> ( <. A , b >. Cgr <. c , y >. <-> <. A , B >. Cgr <. c , y >. ) ) | 
						
							| 104 | 103 | anbi2d |  |-  ( b = B -> ( ( y Btwn <. c , d >. /\ <. A , b >. Cgr <. c , y >. ) <-> ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) ) ) | 
						
							| 105 | 104 | rexbidv |  |-  ( b = B -> ( E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , b >. Cgr <. c , y >. ) <-> E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) ) ) | 
						
							| 106 | 102 105 | 3anbi13d |  |-  ( b = B -> ( ( <. A , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , b >. Cgr <. c , y >. ) ) <-> ( <. A , B >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) ) ) ) | 
						
							| 107 | 106 | 2rexbidv |  |-  ( b = B -> ( E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. A , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , b >. Cgr <. c , y >. ) ) <-> E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. A , B >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) ) ) ) | 
						
							| 108 | 100 107 | rspc2ev |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. A , B >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) ) ) -> E. a e. ( EE ` N ) E. b e. ( EE ` N ) E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) | 
						
							| 109 | 73 74 93 108 | syl3anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> E. a e. ( EE ` N ) E. b e. ( EE ` N ) E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) | 
						
							| 110 |  | fveq2 |  |-  ( n = N -> ( EE ` n ) = ( EE ` N ) ) | 
						
							| 111 | 110 | rexeqdv |  |-  ( n = N -> ( E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) <-> E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) | 
						
							| 112 | 111 | 3anbi3d |  |-  ( n = N -> ( ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) | 
						
							| 113 | 110 112 | rexeqbidv |  |-  ( n = N -> ( E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. d e. ( EE ` N ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) | 
						
							| 114 | 110 113 | rexeqbidv |  |-  ( n = N -> ( E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) | 
						
							| 115 | 110 114 | rexeqbidv |  |-  ( n = N -> ( E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. b e. ( EE ` N ) E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) | 
						
							| 116 | 110 115 | rexeqbidv |  |-  ( n = N -> ( E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. a e. ( EE ` N ) E. b e. ( EE ` N ) E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) | 
						
							| 117 | 116 | rspcev |  |-  ( ( N e. NN /\ E. a e. ( EE ` N ) E. b e. ( EE ` N ) E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) -> E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) | 
						
							| 118 | 72 109 117 | syl2anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) | 
						
							| 119 | 118 | ex |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) -> E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) | 
						
							| 120 | 71 119 | impbid |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) | 
						
							| 121 | 18 120 | bitrid |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Seg<_ <. C , D >. <-> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) |