Step |
Hyp |
Ref |
Expression |
1 |
|
opex |
|- <. A , B >. e. _V |
2 |
|
opex |
|- <. C , D >. e. _V |
3 |
|
eqeq1 |
|- ( p = <. A , B >. -> ( p = <. a , b >. <-> <. A , B >. = <. a , b >. ) ) |
4 |
|
eqcom |
|- ( <. A , B >. = <. a , b >. <-> <. a , b >. = <. A , B >. ) |
5 |
3 4
|
bitrdi |
|- ( p = <. A , B >. -> ( p = <. a , b >. <-> <. a , b >. = <. A , B >. ) ) |
6 |
5
|
3anbi1d |
|- ( p = <. A , B >. -> ( ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> ( <. a , b >. = <. A , B >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) |
7 |
6
|
rexbidv |
|- ( p = <. A , B >. -> ( E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) |
8 |
7
|
2rexbidv |
|- ( p = <. A , B >. -> ( E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) |
9 |
8
|
2rexbidv |
|- ( p = <. A , B >. -> ( E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) |
10 |
|
eqeq1 |
|- ( q = <. C , D >. -> ( q = <. c , d >. <-> <. C , D >. = <. c , d >. ) ) |
11 |
|
eqcom |
|- ( <. C , D >. = <. c , d >. <-> <. c , d >. = <. C , D >. ) |
12 |
10 11
|
bitrdi |
|- ( q = <. C , D >. -> ( q = <. c , d >. <-> <. c , d >. = <. C , D >. ) ) |
13 |
12
|
3anbi2d |
|- ( q = <. C , D >. -> ( ( <. a , b >. = <. A , B >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) |
14 |
13
|
rexbidv |
|- ( q = <. C , D >. -> ( E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) |
15 |
14
|
2rexbidv |
|- ( q = <. C , D >. -> ( E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) |
16 |
15
|
2rexbidv |
|- ( q = <. C , D >. -> ( E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) |
17 |
|
df-segle |
|- Seg<_ = { <. p , q >. | E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( p = <. a , b >. /\ q = <. c , d >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) } |
18 |
1 2 9 16 17
|
brab |
|- ( <. A , B >. Seg<_ <. C , D >. <-> E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) |
19 |
|
vex |
|- a e. _V |
20 |
|
vex |
|- b e. _V |
21 |
19 20
|
opth |
|- ( <. a , b >. = <. A , B >. <-> ( a = A /\ b = B ) ) |
22 |
|
vex |
|- c e. _V |
23 |
|
vex |
|- d e. _V |
24 |
22 23
|
opth |
|- ( <. c , d >. = <. C , D >. <-> ( c = C /\ d = D ) ) |
25 |
|
biid |
|- ( E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) <-> E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) |
26 |
21 24 25
|
3anbi123i |
|- ( ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) |
27 |
26
|
2rexbii |
|- ( E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) |
28 |
27
|
2rexbii |
|- ( E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) |
29 |
28
|
rexbii |
|- ( E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) |
30 |
|
simpl2l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) -> A e. ( EE ` N ) ) |
31 |
30
|
ad2antrl |
|- ( ( ( a = A /\ ( b = B /\ ( c = C /\ d = D ) ) ) /\ ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) ) -> A e. ( EE ` N ) ) |
32 |
|
eleenn |
|- ( A e. ( EE ` N ) -> N e. NN ) |
33 |
31 32
|
syl |
|- ( ( ( a = A /\ ( b = B /\ ( c = C /\ d = D ) ) ) /\ ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) ) -> N e. NN ) |
34 |
|
simprlr |
|- ( ( ( a = A /\ ( b = B /\ ( c = C /\ d = D ) ) ) /\ ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) ) -> n e. NN ) |
35 |
|
simprll |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) -> A e. ( EE ` n ) ) |
36 |
35
|
adantl |
|- ( ( ( a = A /\ ( b = B /\ ( c = C /\ d = D ) ) ) /\ ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) ) -> A e. ( EE ` n ) ) |
37 |
|
axdimuniq |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) ) /\ ( n e. NN /\ A e. ( EE ` n ) ) ) -> N = n ) |
38 |
33 31 34 36 37
|
syl22anc |
|- ( ( ( a = A /\ ( b = B /\ ( c = C /\ d = D ) ) ) /\ ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) ) -> N = n ) |
39 |
38
|
fveq2d |
|- ( ( ( a = A /\ ( b = B /\ ( c = C /\ d = D ) ) ) /\ ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) ) -> ( EE ` N ) = ( EE ` n ) ) |
40 |
39
|
rexeqdv |
|- ( ( ( a = A /\ ( b = B /\ ( c = C /\ d = D ) ) ) /\ ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) ) -> ( E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) <-> E. y e. ( EE ` n ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) |
41 |
40
|
exbiri |
|- ( ( a = A /\ ( b = B /\ ( c = C /\ d = D ) ) ) -> ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) -> ( E. y e. ( EE ` n ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) ) |
42 |
41
|
anassrs |
|- ( ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) ) -> ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) -> ( E. y e. ( EE ` n ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) ) |
43 |
|
eleq1 |
|- ( a = A -> ( a e. ( EE ` n ) <-> A e. ( EE ` n ) ) ) |
44 |
|
eleq1 |
|- ( b = B -> ( b e. ( EE ` n ) <-> B e. ( EE ` n ) ) ) |
45 |
43 44
|
bi2anan9 |
|- ( ( a = A /\ b = B ) -> ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) ) <-> ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) ) ) |
46 |
|
eleq1 |
|- ( c = C -> ( c e. ( EE ` n ) <-> C e. ( EE ` n ) ) ) |
47 |
|
eleq1 |
|- ( d = D -> ( d e. ( EE ` n ) <-> D e. ( EE ` n ) ) ) |
48 |
46 47
|
bi2anan9 |
|- ( ( c = C /\ d = D ) -> ( ( c e. ( EE ` n ) /\ d e. ( EE ` n ) ) <-> ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) |
49 |
45 48
|
bi2anan9 |
|- ( ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) ) -> ( ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ ( c e. ( EE ` n ) /\ d e. ( EE ` n ) ) ) <-> ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) ) |
50 |
49
|
anbi2d |
|- ( ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) ) -> ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ ( c e. ( EE ` n ) /\ d e. ( EE ` n ) ) ) ) <-> ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) ) /\ ( C e. ( EE ` n ) /\ D e. ( EE ` n ) ) ) ) ) ) |
51 |
|
opeq12 |
|- ( ( a = A /\ b = B ) -> <. a , b >. = <. A , B >. ) |
52 |
51
|
breq1d |
|- ( ( a = A /\ b = B ) -> ( <. a , b >. Cgr <. c , y >. <-> <. A , B >. Cgr <. c , y >. ) ) |
53 |
52
|
anbi2d |
|- ( ( a = A /\ b = B ) -> ( ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) <-> ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) ) ) |
54 |
|
opeq12 |
|- ( ( c = C /\ d = D ) -> <. c , d >. = <. C , D >. ) |
55 |
54
|
breq2d |
|- ( ( c = C /\ d = D ) -> ( y Btwn <. c , d >. <-> y Btwn <. C , D >. ) ) |
56 |
|
opeq1 |
|- ( c = C -> <. c , y >. = <. C , y >. ) |
57 |
56
|
breq2d |
|- ( c = C -> ( <. A , B >. Cgr <. c , y >. <-> <. A , B >. Cgr <. C , y >. ) ) |
58 |
57
|
adantr |
|- ( ( c = C /\ d = D ) -> ( <. A , B >. Cgr <. c , y >. <-> <. A , B >. Cgr <. C , y >. ) ) |
59 |
55 58
|
anbi12d |
|- ( ( c = C /\ d = D ) -> ( ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) <-> ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) |
60 |
53 59
|
sylan9bb |
|- ( ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) ) -> ( ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) <-> ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) |
61 |
60
|
rexbidv |
|- ( ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) ) -> ( E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) <-> E. y e. ( EE ` n ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) |
62 |
61
|
imbi1d |
|- ( ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) ) -> ( ( E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) <-> ( E. y e. ( EE ` n ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) ) |
63 |
42 50 62
|
3imtr4d |
|- ( ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) ) -> ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ ( c e. ( EE ` n ) /\ d e. ( EE ` n ) ) ) ) -> ( E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) ) |
64 |
63
|
com12 |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ ( c e. ( EE ` n ) /\ d e. ( EE ` n ) ) ) ) -> ( ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) ) -> ( E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) ) |
65 |
64
|
expd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ ( c e. ( EE ` n ) /\ d e. ( EE ` n ) ) ) ) -> ( ( a = A /\ b = B ) -> ( ( c = C /\ d = D ) -> ( E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) ) ) |
66 |
65
|
3impd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ ( c e. ( EE ` n ) /\ d e. ( EE ` n ) ) ) ) -> ( ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) |
67 |
66
|
expr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( a e. ( EE ` n ) /\ b e. ( EE ` n ) ) ) -> ( ( c e. ( EE ` n ) /\ d e. ( EE ` n ) ) -> ( ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) ) |
68 |
67
|
rexlimdvv |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( a e. ( EE ` n ) /\ b e. ( EE ` n ) ) ) -> ( E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) |
69 |
68
|
rexlimdvva |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) -> ( E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) |
70 |
69
|
rexlimdva |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( ( a = A /\ b = B ) /\ ( c = C /\ d = D ) /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) |
71 |
29 70
|
syl5bi |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) |
72 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> N e. NN ) |
73 |
|
simpl2l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> A e. ( EE ` N ) ) |
74 |
|
simpl2r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> B e. ( EE ` N ) ) |
75 |
|
simpl3l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> C e. ( EE ` N ) ) |
76 |
|
simpl3r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> D e. ( EE ` N ) ) |
77 |
|
eqidd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> <. A , B >. = <. A , B >. ) |
78 |
|
eqidd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> <. C , D >. = <. C , D >. ) |
79 |
|
simpr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) |
80 |
|
opeq1 |
|- ( c = C -> <. c , d >. = <. C , d >. ) |
81 |
80
|
eqeq1d |
|- ( c = C -> ( <. c , d >. = <. C , D >. <-> <. C , d >. = <. C , D >. ) ) |
82 |
80
|
breq2d |
|- ( c = C -> ( y Btwn <. c , d >. <-> y Btwn <. C , d >. ) ) |
83 |
82 57
|
anbi12d |
|- ( c = C -> ( ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) <-> ( y Btwn <. C , d >. /\ <. A , B >. Cgr <. C , y >. ) ) ) |
84 |
83
|
rexbidv |
|- ( c = C -> ( E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) <-> E. y e. ( EE ` N ) ( y Btwn <. C , d >. /\ <. A , B >. Cgr <. C , y >. ) ) ) |
85 |
81 84
|
3anbi23d |
|- ( c = C -> ( ( <. A , B >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) ) <-> ( <. A , B >. = <. A , B >. /\ <. C , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. C , d >. /\ <. A , B >. Cgr <. C , y >. ) ) ) ) |
86 |
|
opeq2 |
|- ( d = D -> <. C , d >. = <. C , D >. ) |
87 |
86
|
eqeq1d |
|- ( d = D -> ( <. C , d >. = <. C , D >. <-> <. C , D >. = <. C , D >. ) ) |
88 |
86
|
breq2d |
|- ( d = D -> ( y Btwn <. C , d >. <-> y Btwn <. C , D >. ) ) |
89 |
88
|
anbi1d |
|- ( d = D -> ( ( y Btwn <. C , d >. /\ <. A , B >. Cgr <. C , y >. ) <-> ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) |
90 |
89
|
rexbidv |
|- ( d = D -> ( E. y e. ( EE ` N ) ( y Btwn <. C , d >. /\ <. A , B >. Cgr <. C , y >. ) <-> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) |
91 |
87 90
|
3anbi23d |
|- ( d = D -> ( ( <. A , B >. = <. A , B >. /\ <. C , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. C , d >. /\ <. A , B >. Cgr <. C , y >. ) ) <-> ( <. A , B >. = <. A , B >. /\ <. C , D >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) ) |
92 |
85 91
|
rspc2ev |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ ( <. A , B >. = <. A , B >. /\ <. C , D >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) -> E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. A , B >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) ) ) |
93 |
75 76 77 78 79 92
|
syl113anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. A , B >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) ) ) |
94 |
|
opeq1 |
|- ( a = A -> <. a , b >. = <. A , b >. ) |
95 |
94
|
eqeq1d |
|- ( a = A -> ( <. a , b >. = <. A , B >. <-> <. A , b >. = <. A , B >. ) ) |
96 |
94
|
breq1d |
|- ( a = A -> ( <. a , b >. Cgr <. c , y >. <-> <. A , b >. Cgr <. c , y >. ) ) |
97 |
96
|
anbi2d |
|- ( a = A -> ( ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) <-> ( y Btwn <. c , d >. /\ <. A , b >. Cgr <. c , y >. ) ) ) |
98 |
97
|
rexbidv |
|- ( a = A -> ( E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) <-> E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , b >. Cgr <. c , y >. ) ) ) |
99 |
95 98
|
3anbi13d |
|- ( a = A -> ( ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> ( <. A , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , b >. Cgr <. c , y >. ) ) ) ) |
100 |
99
|
2rexbidv |
|- ( a = A -> ( E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. A , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , b >. Cgr <. c , y >. ) ) ) ) |
101 |
|
opeq2 |
|- ( b = B -> <. A , b >. = <. A , B >. ) |
102 |
101
|
eqeq1d |
|- ( b = B -> ( <. A , b >. = <. A , B >. <-> <. A , B >. = <. A , B >. ) ) |
103 |
101
|
breq1d |
|- ( b = B -> ( <. A , b >. Cgr <. c , y >. <-> <. A , B >. Cgr <. c , y >. ) ) |
104 |
103
|
anbi2d |
|- ( b = B -> ( ( y Btwn <. c , d >. /\ <. A , b >. Cgr <. c , y >. ) <-> ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) ) ) |
105 |
104
|
rexbidv |
|- ( b = B -> ( E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , b >. Cgr <. c , y >. ) <-> E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) ) ) |
106 |
102 105
|
3anbi13d |
|- ( b = B -> ( ( <. A , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , b >. Cgr <. c , y >. ) ) <-> ( <. A , B >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) ) ) ) |
107 |
106
|
2rexbidv |
|- ( b = B -> ( E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. A , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , b >. Cgr <. c , y >. ) ) <-> E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. A , B >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) ) ) ) |
108 |
100 107
|
rspc2ev |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. A , B >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. A , B >. Cgr <. c , y >. ) ) ) -> E. a e. ( EE ` N ) E. b e. ( EE ` N ) E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) |
109 |
73 74 93 108
|
syl3anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> E. a e. ( EE ` N ) E. b e. ( EE ` N ) E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) |
110 |
|
fveq2 |
|- ( n = N -> ( EE ` n ) = ( EE ` N ) ) |
111 |
110
|
rexeqdv |
|- ( n = N -> ( E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) <-> E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) |
112 |
111
|
3anbi3d |
|- ( n = N -> ( ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) |
113 |
110 112
|
rexeqbidv |
|- ( n = N -> ( E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. d e. ( EE ` N ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) |
114 |
110 113
|
rexeqbidv |
|- ( n = N -> ( E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) |
115 |
110 114
|
rexeqbidv |
|- ( n = N -> ( E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. b e. ( EE ` N ) E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) |
116 |
110 115
|
rexeqbidv |
|- ( n = N -> ( E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. a e. ( EE ` N ) E. b e. ( EE ` N ) E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) |
117 |
116
|
rspcev |
|- ( ( N e. NN /\ E. a e. ( EE ` N ) E. b e. ( EE ` N ) E. c e. ( EE ` N ) E. d e. ( EE ` N ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` N ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) -> E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) |
118 |
72 109 117
|
syl2anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) |
119 |
118
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) -> E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) ) ) |
120 |
71 119
|
impbid |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) ( <. a , b >. = <. A , B >. /\ <. c , d >. = <. C , D >. /\ E. y e. ( EE ` n ) ( y Btwn <. c , d >. /\ <. a , b >. Cgr <. c , y >. ) ) <-> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) |
121 |
18 120
|
syl5bb |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Seg<_ <. C , D >. <-> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) |