| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brsegle |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Seg<_ <. C , D >. <-> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) | 
						
							| 2 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> y Btwn <. C , D >. ) | 
						
							| 3 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 4 |  | simpl3l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> C e. ( EE ` N ) ) | 
						
							| 5 |  | simpl3r |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> D e. ( EE ` N ) ) | 
						
							| 6 |  | simpr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> y e. ( EE ` N ) ) | 
						
							| 7 |  | btwncolinear2 |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( y Btwn <. C , D >. -> C Colinear <. y , D >. ) ) | 
						
							| 8 | 3 4 5 6 7 | syl13anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> ( y Btwn <. C , D >. -> C Colinear <. y , D >. ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> ( y Btwn <. C , D >. -> C Colinear <. y , D >. ) ) | 
						
							| 10 | 2 9 | mpd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> C Colinear <. y , D >. ) | 
						
							| 11 |  | simpl2l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> A e. ( EE ` N ) ) | 
						
							| 12 |  | simpl2r |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> B e. ( EE ` N ) ) | 
						
							| 13 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> <. A , B >. Cgr <. C , y >. ) | 
						
							| 14 | 3 11 12 4 6 13 | cgrcomand |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> <. C , y >. Cgr <. A , B >. ) | 
						
							| 15 |  | simpl2 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) | 
						
							| 16 |  | lineext |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ y e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( C Colinear <. y , D >. /\ <. C , y >. Cgr <. A , B >. ) -> E. x e. ( EE ` N ) <. C , <. y , D >. >. Cgr3 <. A , <. B , x >. >. ) ) | 
						
							| 17 | 3 4 6 5 15 16 | syl131anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) -> ( ( C Colinear <. y , D >. /\ <. C , y >. Cgr <. A , B >. ) -> E. x e. ( EE ` N ) <. C , <. y , D >. >. Cgr3 <. A , <. B , x >. >. ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> ( ( C Colinear <. y , D >. /\ <. C , y >. Cgr <. A , B >. ) -> E. x e. ( EE ` N ) <. C , <. y , D >. >. Cgr3 <. A , <. B , x >. >. ) ) | 
						
							| 19 | 10 14 18 | mp2and |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> E. x e. ( EE ` N ) <. C , <. y , D >. >. Cgr3 <. A , <. B , x >. >. ) | 
						
							| 20 |  | an32 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) <-> ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) ) | 
						
							| 21 |  | simpll1 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 22 |  | simpl3l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> C e. ( EE ` N ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) -> C e. ( EE ` N ) ) | 
						
							| 24 |  | simpr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) -> y e. ( EE ` N ) ) | 
						
							| 25 |  | simpl3r |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> D e. ( EE ` N ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) -> D e. ( EE ` N ) ) | 
						
							| 27 |  | simpl2l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> A e. ( EE ` N ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) -> A e. ( EE ` N ) ) | 
						
							| 29 |  | simpl2r |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> B e. ( EE ` N ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) -> B e. ( EE ` N ) ) | 
						
							| 31 |  | simplr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) -> x e. ( EE ` N ) ) | 
						
							| 32 |  | brcgr3 |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ y e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( <. C , <. y , D >. >. Cgr3 <. A , <. B , x >. >. <-> ( <. C , y >. Cgr <. A , B >. /\ <. C , D >. Cgr <. A , x >. /\ <. y , D >. Cgr <. B , x >. ) ) ) | 
						
							| 33 | 21 23 24 26 28 30 31 32 | syl133anc |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) -> ( <. C , <. y , D >. >. Cgr3 <. A , <. B , x >. >. <-> ( <. C , y >. Cgr <. A , B >. /\ <. C , D >. Cgr <. A , x >. /\ <. y , D >. Cgr <. B , x >. ) ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> ( <. C , <. y , D >. >. Cgr3 <. A , <. B , x >. >. <-> ( <. C , y >. Cgr <. A , B >. /\ <. C , D >. Cgr <. A , x >. /\ <. y , D >. Cgr <. B , x >. ) ) ) | 
						
							| 35 |  | simp2l |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( <. C , y >. Cgr <. A , B >. /\ <. C , D >. Cgr <. A , x >. /\ <. y , D >. Cgr <. B , x >. ) ) -> y Btwn <. C , D >. ) | 
						
							| 36 |  | simp3 |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( <. C , y >. Cgr <. A , B >. /\ <. C , D >. Cgr <. A , x >. /\ <. y , D >. Cgr <. B , x >. ) ) -> ( <. C , y >. Cgr <. A , B >. /\ <. C , D >. Cgr <. A , x >. /\ <. y , D >. Cgr <. B , x >. ) ) | 
						
							| 37 | 33 | 3ad2ant1 |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( <. C , y >. Cgr <. A , B >. /\ <. C , D >. Cgr <. A , x >. /\ <. y , D >. Cgr <. B , x >. ) ) -> ( <. C , <. y , D >. >. Cgr3 <. A , <. B , x >. >. <-> ( <. C , y >. Cgr <. A , B >. /\ <. C , D >. Cgr <. A , x >. /\ <. y , D >. Cgr <. B , x >. ) ) ) | 
						
							| 38 | 36 37 | mpbird |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( <. C , y >. Cgr <. A , B >. /\ <. C , D >. Cgr <. A , x >. /\ <. y , D >. Cgr <. B , x >. ) ) -> <. C , <. y , D >. >. Cgr3 <. A , <. B , x >. >. ) | 
						
							| 39 |  | btwnxfr |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ y e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( y Btwn <. C , D >. /\ <. C , <. y , D >. >. Cgr3 <. A , <. B , x >. >. ) -> B Btwn <. A , x >. ) ) | 
						
							| 40 | 21 23 24 26 28 30 31 39 | syl133anc |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) -> ( ( y Btwn <. C , D >. /\ <. C , <. y , D >. >. Cgr3 <. A , <. B , x >. >. ) -> B Btwn <. A , x >. ) ) | 
						
							| 41 | 40 | 3ad2ant1 |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( <. C , y >. Cgr <. A , B >. /\ <. C , D >. Cgr <. A , x >. /\ <. y , D >. Cgr <. B , x >. ) ) -> ( ( y Btwn <. C , D >. /\ <. C , <. y , D >. >. Cgr3 <. A , <. B , x >. >. ) -> B Btwn <. A , x >. ) ) | 
						
							| 42 | 35 38 41 | mp2and |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( <. C , y >. Cgr <. A , B >. /\ <. C , D >. Cgr <. A , x >. /\ <. y , D >. Cgr <. B , x >. ) ) -> B Btwn <. A , x >. ) | 
						
							| 43 |  | simp32 |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( <. C , y >. Cgr <. A , B >. /\ <. C , D >. Cgr <. A , x >. /\ <. y , D >. Cgr <. B , x >. ) ) -> <. C , D >. Cgr <. A , x >. ) | 
						
							| 44 |  | cgrcom |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( <. C , D >. Cgr <. A , x >. <-> <. A , x >. Cgr <. C , D >. ) ) | 
						
							| 45 | 21 23 26 28 31 44 | syl122anc |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) -> ( <. C , D >. Cgr <. A , x >. <-> <. A , x >. Cgr <. C , D >. ) ) | 
						
							| 46 | 45 | 3ad2ant1 |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( <. C , y >. Cgr <. A , B >. /\ <. C , D >. Cgr <. A , x >. /\ <. y , D >. Cgr <. B , x >. ) ) -> ( <. C , D >. Cgr <. A , x >. <-> <. A , x >. Cgr <. C , D >. ) ) | 
						
							| 47 | 43 46 | mpbid |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( <. C , y >. Cgr <. A , B >. /\ <. C , D >. Cgr <. A , x >. /\ <. y , D >. Cgr <. B , x >. ) ) -> <. A , x >. Cgr <. C , D >. ) | 
						
							| 48 | 42 47 | jca |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) /\ ( <. C , y >. Cgr <. A , B >. /\ <. C , D >. Cgr <. A , x >. /\ <. y , D >. Cgr <. B , x >. ) ) -> ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) | 
						
							| 49 | 48 | 3expia |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> ( ( <. C , y >. Cgr <. A , B >. /\ <. C , D >. Cgr <. A , x >. /\ <. y , D >. Cgr <. B , x >. ) -> ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) ) | 
						
							| 50 | 34 49 | sylbid |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> ( <. C , <. y , D >. >. Cgr3 <. A , <. B , x >. >. -> ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) ) | 
						
							| 51 | 20 50 | sylanb |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> ( <. C , <. y , D >. >. Cgr3 <. A , <. B , x >. >. -> ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) ) | 
						
							| 52 | 51 | an32s |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) /\ x e. ( EE ` N ) ) -> ( <. C , <. y , D >. >. Cgr3 <. A , <. B , x >. >. -> ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) ) | 
						
							| 53 | 52 | reximdva |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> ( E. x e. ( EE ` N ) <. C , <. y , D >. >. Cgr3 <. A , <. B , x >. >. -> E. x e. ( EE ` N ) ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) ) | 
						
							| 54 | 19 53 | mpd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ y e. ( EE ` N ) ) /\ ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) -> E. x e. ( EE ` N ) ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) | 
						
							| 55 | 54 | rexlimdva2 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) -> E. x e. ( EE ` N ) ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) ) | 
						
							| 56 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) -> B Btwn <. A , x >. ) | 
						
							| 57 |  | simpll1 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) -> N e. NN ) | 
						
							| 58 | 27 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) -> A e. ( EE ` N ) ) | 
						
							| 59 |  | simplr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) -> x e. ( EE ` N ) ) | 
						
							| 60 | 29 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) -> B e. ( EE ` N ) ) | 
						
							| 61 |  | btwncolinear1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ x e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( B Btwn <. A , x >. -> A Colinear <. x , B >. ) ) | 
						
							| 62 | 57 58 59 60 61 | syl13anc |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) -> ( B Btwn <. A , x >. -> A Colinear <. x , B >. ) ) | 
						
							| 63 | 56 62 | mpd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) -> A Colinear <. x , B >. ) | 
						
							| 64 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) -> <. A , x >. Cgr <. C , D >. ) | 
						
							| 65 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 66 |  | simpr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> x e. ( EE ` N ) ) | 
						
							| 67 |  | simpl3 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) | 
						
							| 68 |  | lineext |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ x e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( A Colinear <. x , B >. /\ <. A , x >. Cgr <. C , D >. ) -> E. y e. ( EE ` N ) <. A , <. x , B >. >. Cgr3 <. C , <. D , y >. >. ) ) | 
						
							| 69 | 65 27 66 29 67 68 | syl131anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( ( A Colinear <. x , B >. /\ <. A , x >. Cgr <. C , D >. ) -> E. y e. ( EE ` N ) <. A , <. x , B >. >. Cgr3 <. C , <. D , y >. >. ) ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) -> ( ( A Colinear <. x , B >. /\ <. A , x >. Cgr <. C , D >. ) -> E. y e. ( EE ` N ) <. A , <. x , B >. >. Cgr3 <. C , <. D , y >. >. ) ) | 
						
							| 71 | 63 64 70 | mp2and |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) -> E. y e. ( EE ` N ) <. A , <. x , B >. >. Cgr3 <. C , <. D , y >. >. ) | 
						
							| 72 | 27 66 29 | 3jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( A e. ( EE ` N ) /\ x e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) | 
						
							| 73 | 72 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) -> ( A e. ( EE ` N ) /\ x e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) | 
						
							| 74 |  | brcgr3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ x e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( <. A , <. x , B >. >. Cgr3 <. C , <. D , y >. >. <-> ( <. A , x >. Cgr <. C , D >. /\ <. A , B >. Cgr <. C , y >. /\ <. x , B >. Cgr <. D , y >. ) ) ) | 
						
							| 75 | 21 73 23 26 24 74 | syl113anc |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) -> ( <. A , <. x , B >. >. Cgr3 <. C , <. D , y >. >. <-> ( <. A , x >. Cgr <. C , D >. /\ <. A , B >. Cgr <. C , y >. /\ <. x , B >. Cgr <. D , y >. ) ) ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) -> ( <. A , <. x , B >. >. Cgr3 <. C , <. D , y >. >. <-> ( <. A , x >. Cgr <. C , D >. /\ <. A , B >. Cgr <. C , y >. /\ <. x , B >. Cgr <. D , y >. ) ) ) | 
						
							| 77 |  | simp2l |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) /\ ( <. A , x >. Cgr <. C , D >. /\ <. A , B >. Cgr <. C , y >. /\ <. x , B >. Cgr <. D , y >. ) ) -> B Btwn <. A , x >. ) | 
						
							| 78 |  | simp32 |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) /\ ( <. A , x >. Cgr <. C , D >. /\ <. A , B >. Cgr <. C , y >. /\ <. x , B >. Cgr <. D , y >. ) ) -> <. A , B >. Cgr <. C , y >. ) | 
						
							| 79 |  | simp2r |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) /\ ( <. A , x >. Cgr <. C , D >. /\ <. A , B >. Cgr <. C , y >. /\ <. x , B >. Cgr <. D , y >. ) ) -> <. A , x >. Cgr <. C , D >. ) | 
						
							| 80 |  | simp33 |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) /\ ( <. A , x >. Cgr <. C , D >. /\ <. A , B >. Cgr <. C , y >. /\ <. x , B >. Cgr <. D , y >. ) ) -> <. x , B >. Cgr <. D , y >. ) | 
						
							| 81 |  | cgrcomlr |  |-  ( ( N e. NN /\ ( x e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( <. x , B >. Cgr <. D , y >. <-> <. B , x >. Cgr <. y , D >. ) ) | 
						
							| 82 | 21 31 30 26 24 81 | syl122anc |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) -> ( <. x , B >. Cgr <. D , y >. <-> <. B , x >. Cgr <. y , D >. ) ) | 
						
							| 83 | 82 | 3ad2ant1 |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) /\ ( <. A , x >. Cgr <. C , D >. /\ <. A , B >. Cgr <. C , y >. /\ <. x , B >. Cgr <. D , y >. ) ) -> ( <. x , B >. Cgr <. D , y >. <-> <. B , x >. Cgr <. y , D >. ) ) | 
						
							| 84 | 80 83 | mpbid |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) /\ ( <. A , x >. Cgr <. C , D >. /\ <. A , B >. Cgr <. C , y >. /\ <. x , B >. Cgr <. D , y >. ) ) -> <. B , x >. Cgr <. y , D >. ) | 
						
							| 85 | 78 79 84 | 3jca |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) /\ ( <. A , x >. Cgr <. C , D >. /\ <. A , B >. Cgr <. C , y >. /\ <. x , B >. Cgr <. D , y >. ) ) -> ( <. A , B >. Cgr <. C , y >. /\ <. A , x >. Cgr <. C , D >. /\ <. B , x >. Cgr <. y , D >. ) ) | 
						
							| 86 |  | brcgr3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ x e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ y e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , <. B , x >. >. Cgr3 <. C , <. y , D >. >. <-> ( <. A , B >. Cgr <. C , y >. /\ <. A , x >. Cgr <. C , D >. /\ <. B , x >. Cgr <. y , D >. ) ) ) | 
						
							| 87 | 21 28 30 31 23 24 26 86 | syl133anc |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) -> ( <. A , <. B , x >. >. Cgr3 <. C , <. y , D >. >. <-> ( <. A , B >. Cgr <. C , y >. /\ <. A , x >. Cgr <. C , D >. /\ <. B , x >. Cgr <. y , D >. ) ) ) | 
						
							| 88 | 87 | 3ad2ant1 |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) /\ ( <. A , x >. Cgr <. C , D >. /\ <. A , B >. Cgr <. C , y >. /\ <. x , B >. Cgr <. D , y >. ) ) -> ( <. A , <. B , x >. >. Cgr3 <. C , <. y , D >. >. <-> ( <. A , B >. Cgr <. C , y >. /\ <. A , x >. Cgr <. C , D >. /\ <. B , x >. Cgr <. y , D >. ) ) ) | 
						
							| 89 | 85 88 | mpbird |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) /\ ( <. A , x >. Cgr <. C , D >. /\ <. A , B >. Cgr <. C , y >. /\ <. x , B >. Cgr <. D , y >. ) ) -> <. A , <. B , x >. >. Cgr3 <. C , <. y , D >. >. ) | 
						
							| 90 |  | btwnxfr |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ x e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ y e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , x >. /\ <. A , <. B , x >. >. Cgr3 <. C , <. y , D >. >. ) -> y Btwn <. C , D >. ) ) | 
						
							| 91 | 21 28 30 31 23 24 26 90 | syl133anc |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) -> ( ( B Btwn <. A , x >. /\ <. A , <. B , x >. >. Cgr3 <. C , <. y , D >. >. ) -> y Btwn <. C , D >. ) ) | 
						
							| 92 | 91 | 3ad2ant1 |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) /\ ( <. A , x >. Cgr <. C , D >. /\ <. A , B >. Cgr <. C , y >. /\ <. x , B >. Cgr <. D , y >. ) ) -> ( ( B Btwn <. A , x >. /\ <. A , <. B , x >. >. Cgr3 <. C , <. y , D >. >. ) -> y Btwn <. C , D >. ) ) | 
						
							| 93 | 77 89 92 | mp2and |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) /\ ( <. A , x >. Cgr <. C , D >. /\ <. A , B >. Cgr <. C , y >. /\ <. x , B >. Cgr <. D , y >. ) ) -> y Btwn <. C , D >. ) | 
						
							| 94 | 93 78 | jca |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) /\ ( <. A , x >. Cgr <. C , D >. /\ <. A , B >. Cgr <. C , y >. /\ <. x , B >. Cgr <. D , y >. ) ) -> ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) | 
						
							| 95 | 94 | 3expia |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) -> ( ( <. A , x >. Cgr <. C , D >. /\ <. A , B >. Cgr <. C , y >. /\ <. x , B >. Cgr <. D , y >. ) -> ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) | 
						
							| 96 | 76 95 | sylbid |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ y e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) -> ( <. A , <. x , B >. >. Cgr3 <. C , <. D , y >. >. -> ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) | 
						
							| 97 | 96 | an32s |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) /\ y e. ( EE ` N ) ) -> ( <. A , <. x , B >. >. Cgr3 <. C , <. D , y >. >. -> ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) | 
						
							| 98 | 97 | reximdva |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) -> ( E. y e. ( EE ` N ) <. A , <. x , B >. >. Cgr3 <. C , <. D , y >. >. -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) | 
						
							| 99 | 71 98 | mpd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) | 
						
							| 100 | 99 | rexlimdva2 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( E. x e. ( EE ` N ) ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) -> E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) ) ) | 
						
							| 101 | 55 100 | impbid |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( E. y e. ( EE ` N ) ( y Btwn <. C , D >. /\ <. A , B >. Cgr <. C , y >. ) <-> E. x e. ( EE ` N ) ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) ) | 
						
							| 102 | 1 101 | bitrd |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Seg<_ <. C , D >. <-> E. x e. ( EE ` N ) ( B Btwn <. A , x >. /\ <. A , x >. Cgr <. C , D >. ) ) ) |