| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brcolinear |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) | 
						
							| 2 | 1 | 3adant3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) | 
						
							| 3 | 2 | anbi1d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( A Colinear <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) <-> ( ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) /\ <. A , B >. Cgr <. D , E >. ) ) ) | 
						
							| 4 |  | simp1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 5 |  | simp3r |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> E e. ( EE ` N ) ) | 
						
							| 6 |  | simp3l |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 7 | 5 6 | jca |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( E e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) | 
						
							| 8 |  | simp21 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 9 |  | simp23 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 10 | 8 9 | jca |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) | 
						
							| 11 | 4 7 10 | 3jca |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( N e. NN /\ ( E e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> ( N e. NN /\ ( E e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) ) | 
						
							| 13 |  | axsegcon |  |-  ( ( N e. NN /\ ( E e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. f e. ( EE ` N ) ( D Btwn <. E , f >. /\ <. D , f >. Cgr <. A , C >. ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> E. f e. ( EE ` N ) ( D Btwn <. E , f >. /\ <. D , f >. Cgr <. A , C >. ) ) | 
						
							| 15 |  | simprlr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) /\ ( D Btwn <. E , f >. /\ <. A , C >. Cgr <. D , f >. ) ) ) -> <. A , B >. Cgr <. D , E >. ) | 
						
							| 16 |  | simprrr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) /\ ( D Btwn <. E , f >. /\ <. A , C >. Cgr <. D , f >. ) ) ) -> <. A , C >. Cgr <. D , f >. ) | 
						
							| 17 |  | an4 |  |-  ( ( ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) /\ ( D Btwn <. E , f >. /\ <. A , C >. Cgr <. D , f >. ) ) <-> ( ( A Btwn <. B , C >. /\ D Btwn <. E , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. ) ) ) | 
						
							| 18 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 19 |  | simpl21 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> A e. ( EE ` N ) ) | 
						
							| 20 |  | simpl22 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> B e. ( EE ` N ) ) | 
						
							| 21 |  | simpl3l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> D e. ( EE ` N ) ) | 
						
							| 22 |  | simpl3r |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> E e. ( EE ` N ) ) | 
						
							| 23 |  | cgrcomlr |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. D , E >. <-> <. B , A >. Cgr <. E , D >. ) ) | 
						
							| 24 | 18 19 20 21 22 23 | syl122anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( <. A , B >. Cgr <. D , E >. <-> <. B , A >. Cgr <. E , D >. ) ) | 
						
							| 25 | 24 | anbi1d |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. ) <-> ( <. B , A >. Cgr <. E , D >. /\ <. A , C >. Cgr <. D , f >. ) ) ) | 
						
							| 26 | 25 | anbi2d |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( ( A Btwn <. B , C >. /\ D Btwn <. E , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. ) ) <-> ( ( A Btwn <. B , C >. /\ D Btwn <. E , f >. ) /\ ( <. B , A >. Cgr <. E , D >. /\ <. A , C >. Cgr <. D , f >. ) ) ) ) | 
						
							| 27 |  | simpl23 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> C e. ( EE ` N ) ) | 
						
							| 28 |  | simpr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> f e. ( EE ` N ) ) | 
						
							| 29 |  | cgrextend |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ D e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( A Btwn <. B , C >. /\ D Btwn <. E , f >. ) /\ ( <. B , A >. Cgr <. E , D >. /\ <. A , C >. Cgr <. D , f >. ) ) -> <. B , C >. Cgr <. E , f >. ) ) | 
						
							| 30 | 18 20 19 27 22 21 28 29 | syl133anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( ( A Btwn <. B , C >. /\ D Btwn <. E , f >. ) /\ ( <. B , A >. Cgr <. E , D >. /\ <. A , C >. Cgr <. D , f >. ) ) -> <. B , C >. Cgr <. E , f >. ) ) | 
						
							| 31 | 26 30 | sylbid |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( ( A Btwn <. B , C >. /\ D Btwn <. E , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. ) ) -> <. B , C >. Cgr <. E , f >. ) ) | 
						
							| 32 | 17 31 | biimtrid |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) /\ ( D Btwn <. E , f >. /\ <. A , C >. Cgr <. D , f >. ) ) -> <. B , C >. Cgr <. E , f >. ) ) | 
						
							| 33 | 32 | imp |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) /\ ( D Btwn <. E , f >. /\ <. A , C >. Cgr <. D , f >. ) ) ) -> <. B , C >. Cgr <. E , f >. ) | 
						
							| 34 | 15 16 33 | 3jca |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) /\ ( D Btwn <. E , f >. /\ <. A , C >. Cgr <. D , f >. ) ) ) -> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. E , f >. ) ) | 
						
							| 35 | 34 | expr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> ( ( D Btwn <. E , f >. /\ <. A , C >. Cgr <. D , f >. ) -> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. E , f >. ) ) ) | 
						
							| 36 |  | cgrcom |  |-  ( ( N e. NN /\ ( D e. ( EE ` N ) /\ f e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. D , f >. Cgr <. A , C >. <-> <. A , C >. Cgr <. D , f >. ) ) | 
						
							| 37 | 18 21 28 19 27 36 | syl122anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( <. D , f >. Cgr <. A , C >. <-> <. A , C >. Cgr <. D , f >. ) ) | 
						
							| 38 | 37 | anbi2d |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( D Btwn <. E , f >. /\ <. D , f >. Cgr <. A , C >. ) <-> ( D Btwn <. E , f >. /\ <. A , C >. Cgr <. D , f >. ) ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> ( ( D Btwn <. E , f >. /\ <. D , f >. Cgr <. A , C >. ) <-> ( D Btwn <. E , f >. /\ <. A , C >. Cgr <. D , f >. ) ) ) | 
						
							| 40 |  | simpl2 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) | 
						
							| 41 |  | brcgr3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. <-> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. E , f >. ) ) ) | 
						
							| 42 | 18 40 21 22 28 41 | syl113anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. <-> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. E , f >. ) ) ) | 
						
							| 43 | 42 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. <-> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. E , f >. ) ) ) | 
						
							| 44 | 35 39 43 | 3imtr4d |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> ( ( D Btwn <. E , f >. /\ <. D , f >. Cgr <. A , C >. ) -> <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) | 
						
							| 45 | 44 | an32s |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) ) /\ f e. ( EE ` N ) ) -> ( ( D Btwn <. E , f >. /\ <. D , f >. Cgr <. A , C >. ) -> <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) | 
						
							| 46 | 45 | reximdva |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> ( E. f e. ( EE ` N ) ( D Btwn <. E , f >. /\ <. D , f >. Cgr <. A , C >. ) -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) | 
						
							| 47 | 14 46 | mpd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) | 
						
							| 48 | 47 | exp32 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( A Btwn <. B , C >. -> ( <. A , B >. Cgr <. D , E >. -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) ) | 
						
							| 49 |  | 3ancoma |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) <-> ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) | 
						
							| 50 |  | btwncom |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) | 
						
							| 51 | 49 50 | sylan2b |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) | 
						
							| 52 | 51 | 3adant3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) | 
						
							| 53 |  | simp3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) | 
						
							| 54 |  | simp22 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 55 |  | axsegcon |  |-  ( ( N e. NN /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. f e. ( EE ` N ) ( E Btwn <. D , f >. /\ <. E , f >. Cgr <. B , C >. ) ) | 
						
							| 56 | 4 53 54 9 55 | syl112anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> E. f e. ( EE ` N ) ( E Btwn <. D , f >. /\ <. E , f >. Cgr <. B , C >. ) ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> E. f e. ( EE ` N ) ( E Btwn <. D , f >. /\ <. E , f >. Cgr <. B , C >. ) ) | 
						
							| 58 |  | cgrextend |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) ) -> <. A , C >. Cgr <. D , f >. ) ) | 
						
							| 59 | 18 40 21 22 28 58 | syl113anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) ) -> <. A , C >. Cgr <. D , f >. ) ) | 
						
							| 60 |  | simpll |  |-  ( ( ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) /\ <. A , C >. Cgr <. D , f >. ) -> <. A , B >. Cgr <. D , E >. ) | 
						
							| 61 |  | simpr |  |-  ( ( ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) /\ <. A , C >. Cgr <. D , f >. ) -> <. A , C >. Cgr <. D , f >. ) | 
						
							| 62 |  | simplr |  |-  ( ( ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) /\ <. A , C >. Cgr <. D , f >. ) -> <. B , C >. Cgr <. E , f >. ) | 
						
							| 63 | 60 61 62 | 3jca |  |-  ( ( ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) /\ <. A , C >. Cgr <. D , f >. ) -> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. E , f >. ) ) | 
						
							| 64 | 63 | ex |  |-  ( ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) -> ( <. A , C >. Cgr <. D , f >. -> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. E , f >. ) ) ) | 
						
							| 65 | 64 | adantl |  |-  ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) ) -> ( <. A , C >. Cgr <. D , f >. -> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. E , f >. ) ) ) | 
						
							| 66 | 59 65 | sylcom |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) ) -> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. E , f >. ) ) ) | 
						
							| 67 |  | an4 |  |-  ( ( ( B Btwn <. A , C >. /\ <. A , B >. Cgr <. D , E >. ) /\ ( E Btwn <. D , f >. /\ <. E , f >. Cgr <. B , C >. ) ) <-> ( ( B Btwn <. A , C >. /\ E Btwn <. D , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. E , f >. Cgr <. B , C >. ) ) ) | 
						
							| 68 |  | cgrcom |  |-  ( ( N e. NN /\ ( E e. ( EE ` N ) /\ f e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. E , f >. Cgr <. B , C >. <-> <. B , C >. Cgr <. E , f >. ) ) | 
						
							| 69 | 18 22 28 20 27 68 | syl122anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( <. E , f >. Cgr <. B , C >. <-> <. B , C >. Cgr <. E , f >. ) ) | 
						
							| 70 | 69 | anbi2d |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( <. A , B >. Cgr <. D , E >. /\ <. E , f >. Cgr <. B , C >. ) <-> ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) ) ) | 
						
							| 71 | 70 | anbi2d |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. E , f >. Cgr <. B , C >. ) ) <-> ( ( B Btwn <. A , C >. /\ E Btwn <. D , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) ) ) ) | 
						
							| 72 | 67 71 | bitrid |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( ( B Btwn <. A , C >. /\ <. A , B >. Cgr <. D , E >. ) /\ ( E Btwn <. D , f >. /\ <. E , f >. Cgr <. B , C >. ) ) <-> ( ( B Btwn <. A , C >. /\ E Btwn <. D , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) ) ) ) | 
						
							| 73 | 66 72 42 | 3imtr4d |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( ( B Btwn <. A , C >. /\ <. A , B >. Cgr <. D , E >. ) /\ ( E Btwn <. D , f >. /\ <. E , f >. Cgr <. B , C >. ) ) -> <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) | 
						
							| 74 | 73 | expdimp |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( B Btwn <. A , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> ( ( E Btwn <. D , f >. /\ <. E , f >. Cgr <. B , C >. ) -> <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) | 
						
							| 75 | 74 | an32s |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , B >. Cgr <. D , E >. ) ) /\ f e. ( EE ` N ) ) -> ( ( E Btwn <. D , f >. /\ <. E , f >. Cgr <. B , C >. ) -> <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) | 
						
							| 76 | 75 | reximdva |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> ( E. f e. ( EE ` N ) ( E Btwn <. D , f >. /\ <. E , f >. Cgr <. B , C >. ) -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) | 
						
							| 77 | 57 76 | mpd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) | 
						
							| 78 | 77 | exp32 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. -> ( <. A , B >. Cgr <. D , E >. -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) ) | 
						
							| 79 | 52 78 | sylbird |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( B Btwn <. C , A >. -> ( <. A , B >. Cgr <. D , E >. -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) ) | 
						
							| 80 |  | cgrxfr |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ <. A , B >. Cgr <. D , E >. ) -> E. f e. ( EE ` N ) ( f Btwn <. D , E >. /\ <. A , <. C , B >. >. Cgr3 <. D , <. f , E >. >. ) ) ) | 
						
							| 81 | 4 8 9 54 53 80 | syl131anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ <. A , B >. Cgr <. D , E >. ) -> E. f e. ( EE ` N ) ( f Btwn <. D , E >. /\ <. A , <. C , B >. >. Cgr3 <. D , <. f , E >. >. ) ) ) | 
						
							| 82 |  | cgr3permute1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. <-> <. A , <. C , B >. >. Cgr3 <. D , <. f , E >. >. ) ) | 
						
							| 83 | 18 40 21 22 28 82 | syl113anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. <-> <. A , <. C , B >. >. Cgr3 <. D , <. f , E >. >. ) ) | 
						
							| 84 | 83 | biimprd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( <. A , <. C , B >. >. Cgr3 <. D , <. f , E >. >. -> <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) | 
						
							| 85 | 84 | adantld |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( f Btwn <. D , E >. /\ <. A , <. C , B >. >. Cgr3 <. D , <. f , E >. >. ) -> <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) | 
						
							| 86 | 85 | reximdva |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( E. f e. ( EE ` N ) ( f Btwn <. D , E >. /\ <. A , <. C , B >. >. Cgr3 <. D , <. f , E >. >. ) -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) | 
						
							| 87 | 81 86 | syld |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ <. A , B >. Cgr <. D , E >. ) -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) | 
						
							| 88 | 87 | expd |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( C Btwn <. A , B >. -> ( <. A , B >. Cgr <. D , E >. -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) ) | 
						
							| 89 | 48 79 88 | 3jaod |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) -> ( <. A , B >. Cgr <. D , E >. -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) ) | 
						
							| 90 | 89 | impd |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) /\ <. A , B >. Cgr <. D , E >. ) -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) | 
						
							| 91 | 3 90 | sylbid |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( A Colinear <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) |