Step |
Hyp |
Ref |
Expression |
1 |
|
brcolinear |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) |
2 |
1
|
3adant3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) |
3 |
2
|
anbi1d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( A Colinear <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) <-> ( ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) /\ <. A , B >. Cgr <. D , E >. ) ) ) |
4 |
|
simp1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> N e. NN ) |
5 |
|
simp3r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> E e. ( EE ` N ) ) |
6 |
|
simp3l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
7 |
5 6
|
jca |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( E e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) |
8 |
|
simp21 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
9 |
|
simp23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
10 |
8 9
|
jca |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
11 |
4 7 10
|
3jca |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( N e. NN /\ ( E e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) ) |
12 |
11
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> ( N e. NN /\ ( E e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) ) |
13 |
|
axsegcon |
|- ( ( N e. NN /\ ( E e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. f e. ( EE ` N ) ( D Btwn <. E , f >. /\ <. D , f >. Cgr <. A , C >. ) ) |
14 |
12 13
|
syl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> E. f e. ( EE ` N ) ( D Btwn <. E , f >. /\ <. D , f >. Cgr <. A , C >. ) ) |
15 |
|
simprlr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) /\ ( D Btwn <. E , f >. /\ <. A , C >. Cgr <. D , f >. ) ) ) -> <. A , B >. Cgr <. D , E >. ) |
16 |
|
simprrr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) /\ ( D Btwn <. E , f >. /\ <. A , C >. Cgr <. D , f >. ) ) ) -> <. A , C >. Cgr <. D , f >. ) |
17 |
|
an4 |
|- ( ( ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) /\ ( D Btwn <. E , f >. /\ <. A , C >. Cgr <. D , f >. ) ) <-> ( ( A Btwn <. B , C >. /\ D Btwn <. E , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. ) ) ) |
18 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> N e. NN ) |
19 |
|
simpl21 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> A e. ( EE ` N ) ) |
20 |
|
simpl22 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> B e. ( EE ` N ) ) |
21 |
|
simpl3l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> D e. ( EE ` N ) ) |
22 |
|
simpl3r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> E e. ( EE ` N ) ) |
23 |
|
cgrcomlr |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. D , E >. <-> <. B , A >. Cgr <. E , D >. ) ) |
24 |
18 19 20 21 22 23
|
syl122anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( <. A , B >. Cgr <. D , E >. <-> <. B , A >. Cgr <. E , D >. ) ) |
25 |
24
|
anbi1d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. ) <-> ( <. B , A >. Cgr <. E , D >. /\ <. A , C >. Cgr <. D , f >. ) ) ) |
26 |
25
|
anbi2d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( ( A Btwn <. B , C >. /\ D Btwn <. E , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. ) ) <-> ( ( A Btwn <. B , C >. /\ D Btwn <. E , f >. ) /\ ( <. B , A >. Cgr <. E , D >. /\ <. A , C >. Cgr <. D , f >. ) ) ) ) |
27 |
|
simpl23 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> C e. ( EE ` N ) ) |
28 |
|
simpr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> f e. ( EE ` N ) ) |
29 |
|
cgrextend |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ D e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( A Btwn <. B , C >. /\ D Btwn <. E , f >. ) /\ ( <. B , A >. Cgr <. E , D >. /\ <. A , C >. Cgr <. D , f >. ) ) -> <. B , C >. Cgr <. E , f >. ) ) |
30 |
18 20 19 27 22 21 28 29
|
syl133anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( ( A Btwn <. B , C >. /\ D Btwn <. E , f >. ) /\ ( <. B , A >. Cgr <. E , D >. /\ <. A , C >. Cgr <. D , f >. ) ) -> <. B , C >. Cgr <. E , f >. ) ) |
31 |
26 30
|
sylbid |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( ( A Btwn <. B , C >. /\ D Btwn <. E , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. ) ) -> <. B , C >. Cgr <. E , f >. ) ) |
32 |
17 31
|
syl5bi |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) /\ ( D Btwn <. E , f >. /\ <. A , C >. Cgr <. D , f >. ) ) -> <. B , C >. Cgr <. E , f >. ) ) |
33 |
32
|
imp |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) /\ ( D Btwn <. E , f >. /\ <. A , C >. Cgr <. D , f >. ) ) ) -> <. B , C >. Cgr <. E , f >. ) |
34 |
15 16 33
|
3jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) /\ ( D Btwn <. E , f >. /\ <. A , C >. Cgr <. D , f >. ) ) ) -> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. E , f >. ) ) |
35 |
34
|
expr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> ( ( D Btwn <. E , f >. /\ <. A , C >. Cgr <. D , f >. ) -> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. E , f >. ) ) ) |
36 |
|
cgrcom |
|- ( ( N e. NN /\ ( D e. ( EE ` N ) /\ f e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. D , f >. Cgr <. A , C >. <-> <. A , C >. Cgr <. D , f >. ) ) |
37 |
18 21 28 19 27 36
|
syl122anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( <. D , f >. Cgr <. A , C >. <-> <. A , C >. Cgr <. D , f >. ) ) |
38 |
37
|
anbi2d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( D Btwn <. E , f >. /\ <. D , f >. Cgr <. A , C >. ) <-> ( D Btwn <. E , f >. /\ <. A , C >. Cgr <. D , f >. ) ) ) |
39 |
38
|
adantr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> ( ( D Btwn <. E , f >. /\ <. D , f >. Cgr <. A , C >. ) <-> ( D Btwn <. E , f >. /\ <. A , C >. Cgr <. D , f >. ) ) ) |
40 |
|
simpl2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
41 |
|
brcgr3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. <-> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. E , f >. ) ) ) |
42 |
18 40 21 22 28 41
|
syl113anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. <-> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. E , f >. ) ) ) |
43 |
42
|
adantr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. <-> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. E , f >. ) ) ) |
44 |
35 39 43
|
3imtr4d |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> ( ( D Btwn <. E , f >. /\ <. D , f >. Cgr <. A , C >. ) -> <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) |
45 |
44
|
an32s |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) ) /\ f e. ( EE ` N ) ) -> ( ( D Btwn <. E , f >. /\ <. D , f >. Cgr <. A , C >. ) -> <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) |
46 |
45
|
reximdva |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> ( E. f e. ( EE ` N ) ( D Btwn <. E , f >. /\ <. D , f >. Cgr <. A , C >. ) -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) |
47 |
14 46
|
mpd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( A Btwn <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) |
48 |
47
|
exp32 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( A Btwn <. B , C >. -> ( <. A , B >. Cgr <. D , E >. -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) ) |
49 |
|
3ancoma |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) <-> ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
50 |
|
btwncom |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) |
51 |
49 50
|
sylan2b |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) |
52 |
51
|
3adant3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) |
53 |
|
simp3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) |
54 |
|
simp22 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
55 |
|
axsegcon |
|- ( ( N e. NN /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. f e. ( EE ` N ) ( E Btwn <. D , f >. /\ <. E , f >. Cgr <. B , C >. ) ) |
56 |
4 53 54 9 55
|
syl112anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> E. f e. ( EE ` N ) ( E Btwn <. D , f >. /\ <. E , f >. Cgr <. B , C >. ) ) |
57 |
56
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> E. f e. ( EE ` N ) ( E Btwn <. D , f >. /\ <. E , f >. Cgr <. B , C >. ) ) |
58 |
|
cgrextend |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) ) -> <. A , C >. Cgr <. D , f >. ) ) |
59 |
18 40 21 22 28 58
|
syl113anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) ) -> <. A , C >. Cgr <. D , f >. ) ) |
60 |
|
simpll |
|- ( ( ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) /\ <. A , C >. Cgr <. D , f >. ) -> <. A , B >. Cgr <. D , E >. ) |
61 |
|
simpr |
|- ( ( ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) /\ <. A , C >. Cgr <. D , f >. ) -> <. A , C >. Cgr <. D , f >. ) |
62 |
|
simplr |
|- ( ( ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) /\ <. A , C >. Cgr <. D , f >. ) -> <. B , C >. Cgr <. E , f >. ) |
63 |
60 61 62
|
3jca |
|- ( ( ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) /\ <. A , C >. Cgr <. D , f >. ) -> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. E , f >. ) ) |
64 |
63
|
ex |
|- ( ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) -> ( <. A , C >. Cgr <. D , f >. -> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. E , f >. ) ) ) |
65 |
64
|
adantl |
|- ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) ) -> ( <. A , C >. Cgr <. D , f >. -> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. E , f >. ) ) ) |
66 |
59 65
|
sylcom |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) ) -> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , f >. /\ <. B , C >. Cgr <. E , f >. ) ) ) |
67 |
|
an4 |
|- ( ( ( B Btwn <. A , C >. /\ <. A , B >. Cgr <. D , E >. ) /\ ( E Btwn <. D , f >. /\ <. E , f >. Cgr <. B , C >. ) ) <-> ( ( B Btwn <. A , C >. /\ E Btwn <. D , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. E , f >. Cgr <. B , C >. ) ) ) |
68 |
|
cgrcom |
|- ( ( N e. NN /\ ( E e. ( EE ` N ) /\ f e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. E , f >. Cgr <. B , C >. <-> <. B , C >. Cgr <. E , f >. ) ) |
69 |
18 22 28 20 27 68
|
syl122anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( <. E , f >. Cgr <. B , C >. <-> <. B , C >. Cgr <. E , f >. ) ) |
70 |
69
|
anbi2d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( <. A , B >. Cgr <. D , E >. /\ <. E , f >. Cgr <. B , C >. ) <-> ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) ) ) |
71 |
70
|
anbi2d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. E , f >. Cgr <. B , C >. ) ) <-> ( ( B Btwn <. A , C >. /\ E Btwn <. D , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) ) ) ) |
72 |
67 71
|
syl5bb |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( ( B Btwn <. A , C >. /\ <. A , B >. Cgr <. D , E >. ) /\ ( E Btwn <. D , f >. /\ <. E , f >. Cgr <. B , C >. ) ) <-> ( ( B Btwn <. A , C >. /\ E Btwn <. D , f >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , f >. ) ) ) ) |
73 |
66 72 42
|
3imtr4d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( ( B Btwn <. A , C >. /\ <. A , B >. Cgr <. D , E >. ) /\ ( E Btwn <. D , f >. /\ <. E , f >. Cgr <. B , C >. ) ) -> <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) |
74 |
73
|
expdimp |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( B Btwn <. A , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> ( ( E Btwn <. D , f >. /\ <. E , f >. Cgr <. B , C >. ) -> <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) |
75 |
74
|
an32s |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , B >. Cgr <. D , E >. ) ) /\ f e. ( EE ` N ) ) -> ( ( E Btwn <. D , f >. /\ <. E , f >. Cgr <. B , C >. ) -> <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) |
76 |
75
|
reximdva |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> ( E. f e. ( EE ` N ) ( E Btwn <. D , f >. /\ <. E , f >. Cgr <. B , C >. ) -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) |
77 |
57 76
|
mpd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , B >. Cgr <. D , E >. ) ) -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) |
78 |
77
|
exp32 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. -> ( <. A , B >. Cgr <. D , E >. -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) ) |
79 |
52 78
|
sylbird |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( B Btwn <. C , A >. -> ( <. A , B >. Cgr <. D , E >. -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) ) |
80 |
|
cgrxfr |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ <. A , B >. Cgr <. D , E >. ) -> E. f e. ( EE ` N ) ( f Btwn <. D , E >. /\ <. A , <. C , B >. >. Cgr3 <. D , <. f , E >. >. ) ) ) |
81 |
4 8 9 54 53 80
|
syl131anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ <. A , B >. Cgr <. D , E >. ) -> E. f e. ( EE ` N ) ( f Btwn <. D , E >. /\ <. A , <. C , B >. >. Cgr3 <. D , <. f , E >. >. ) ) ) |
82 |
|
cgr3permute1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. <-> <. A , <. C , B >. >. Cgr3 <. D , <. f , E >. >. ) ) |
83 |
18 40 21 22 28 82
|
syl113anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. <-> <. A , <. C , B >. >. Cgr3 <. D , <. f , E >. >. ) ) |
84 |
83
|
biimprd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( <. A , <. C , B >. >. Cgr3 <. D , <. f , E >. >. -> <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) |
85 |
84
|
adantld |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) -> ( ( f Btwn <. D , E >. /\ <. A , <. C , B >. >. Cgr3 <. D , <. f , E >. >. ) -> <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) |
86 |
85
|
reximdva |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( E. f e. ( EE ` N ) ( f Btwn <. D , E >. /\ <. A , <. C , B >. >. Cgr3 <. D , <. f , E >. >. ) -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) |
87 |
81 86
|
syld |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ <. A , B >. Cgr <. D , E >. ) -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) |
88 |
87
|
expd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( C Btwn <. A , B >. -> ( <. A , B >. Cgr <. D , E >. -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) ) |
89 |
48 79 88
|
3jaod |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) -> ( <. A , B >. Cgr <. D , E >. -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) ) |
90 |
89
|
impd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) /\ <. A , B >. Cgr <. D , E >. ) -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) |
91 |
3 90
|
sylbid |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( A Colinear <. B , C >. /\ <. A , B >. Cgr <. D , E >. ) -> E. f e. ( EE ` N ) <. A , <. B , C >. >. Cgr3 <. D , <. E , f >. >. ) ) |