Metamath Proof Explorer


Theorem lineext

Description: Extend a line with a missing point. Theorem 4.14 of Schwabhauser p. 37. (Contributed by Scott Fenton, 6-Oct-2013)

Ref Expression
Assertion lineext N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N A Colinear B C A B Cgr D E f 𝔼 N A B C Cgr3 D E f

Proof

Step Hyp Ref Expression
1 brcolinear N A 𝔼 N B 𝔼 N C 𝔼 N A Colinear B C A Btwn B C B Btwn C A C Btwn A B
2 1 3adant3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N A Colinear B C A Btwn B C B Btwn C A C Btwn A B
3 2 anbi1d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N A Colinear B C A B Cgr D E A Btwn B C B Btwn C A C Btwn A B A B Cgr D E
4 simp1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N N
5 simp3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N E 𝔼 N
6 simp3l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N D 𝔼 N
7 5 6 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N E 𝔼 N D 𝔼 N
8 simp21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N A 𝔼 N
9 simp23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N C 𝔼 N
10 8 9 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N A 𝔼 N C 𝔼 N
11 4 7 10 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N N E 𝔼 N D 𝔼 N A 𝔼 N C 𝔼 N
12 11 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N A Btwn B C A B Cgr D E N E 𝔼 N D 𝔼 N A 𝔼 N C 𝔼 N
13 axsegcon N E 𝔼 N D 𝔼 N A 𝔼 N C 𝔼 N f 𝔼 N D Btwn E f D f Cgr A C
14 12 13 syl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N A Btwn B C A B Cgr D E f 𝔼 N D Btwn E f D f Cgr A C
15 simprlr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A Btwn B C A B Cgr D E D Btwn E f A C Cgr D f A B Cgr D E
16 simprrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A Btwn B C A B Cgr D E D Btwn E f A C Cgr D f A C Cgr D f
17 an4 A Btwn B C A B Cgr D E D Btwn E f A C Cgr D f A Btwn B C D Btwn E f A B Cgr D E A C Cgr D f
18 simpl1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N N
19 simpl21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A 𝔼 N
20 simpl22 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N B 𝔼 N
21 simpl3l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N D 𝔼 N
22 simpl3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N E 𝔼 N
23 cgrcomlr N A 𝔼 N B 𝔼 N D 𝔼 N E 𝔼 N A B Cgr D E B A Cgr E D
24 18 19 20 21 22 23 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A B Cgr D E B A Cgr E D
25 24 anbi1d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A B Cgr D E A C Cgr D f B A Cgr E D A C Cgr D f
26 25 anbi2d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A Btwn B C D Btwn E f A B Cgr D E A C Cgr D f A Btwn B C D Btwn E f B A Cgr E D A C Cgr D f
27 simpl23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N C 𝔼 N
28 simpr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N f 𝔼 N
29 cgrextend N B 𝔼 N A 𝔼 N C 𝔼 N E 𝔼 N D 𝔼 N f 𝔼 N A Btwn B C D Btwn E f B A Cgr E D A C Cgr D f B C Cgr E f
30 18 20 19 27 22 21 28 29 syl133anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A Btwn B C D Btwn E f B A Cgr E D A C Cgr D f B C Cgr E f
31 26 30 sylbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A Btwn B C D Btwn E f A B Cgr D E A C Cgr D f B C Cgr E f
32 17 31 syl5bi N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A Btwn B C A B Cgr D E D Btwn E f A C Cgr D f B C Cgr E f
33 32 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A Btwn B C A B Cgr D E D Btwn E f A C Cgr D f B C Cgr E f
34 15 16 33 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A Btwn B C A B Cgr D E D Btwn E f A C Cgr D f A B Cgr D E A C Cgr D f B C Cgr E f
35 34 expr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A Btwn B C A B Cgr D E D Btwn E f A C Cgr D f A B Cgr D E A C Cgr D f B C Cgr E f
36 cgrcom N D 𝔼 N f 𝔼 N A 𝔼 N C 𝔼 N D f Cgr A C A C Cgr D f
37 18 21 28 19 27 36 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N D f Cgr A C A C Cgr D f
38 37 anbi2d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N D Btwn E f D f Cgr A C D Btwn E f A C Cgr D f
39 38 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A Btwn B C A B Cgr D E D Btwn E f D f Cgr A C D Btwn E f A C Cgr D f
40 simpl2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N
41 brcgr3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A B C Cgr3 D E f A B Cgr D E A C Cgr D f B C Cgr E f
42 18 40 21 22 28 41 syl113anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A B C Cgr3 D E f A B Cgr D E A C Cgr D f B C Cgr E f
43 42 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A Btwn B C A B Cgr D E A B C Cgr3 D E f A B Cgr D E A C Cgr D f B C Cgr E f
44 35 39 43 3imtr4d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A Btwn B C A B Cgr D E D Btwn E f D f Cgr A C A B C Cgr3 D E f
45 44 an32s N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N A Btwn B C A B Cgr D E f 𝔼 N D Btwn E f D f Cgr A C A B C Cgr3 D E f
46 45 reximdva N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N A Btwn B C A B Cgr D E f 𝔼 N D Btwn E f D f Cgr A C f 𝔼 N A B C Cgr3 D E f
47 14 46 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N A Btwn B C A B Cgr D E f 𝔼 N A B C Cgr3 D E f
48 47 exp32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N A Btwn B C A B Cgr D E f 𝔼 N A B C Cgr3 D E f
49 3ancoma A 𝔼 N B 𝔼 N C 𝔼 N B 𝔼 N A 𝔼 N C 𝔼 N
50 btwncom N B 𝔼 N A 𝔼 N C 𝔼 N B Btwn A C B Btwn C A
51 49 50 sylan2b N A 𝔼 N B 𝔼 N C 𝔼 N B Btwn A C B Btwn C A
52 51 3adant3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N B Btwn A C B Btwn C A
53 simp3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N D 𝔼 N E 𝔼 N
54 simp22 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N B 𝔼 N
55 axsegcon N D 𝔼 N E 𝔼 N B 𝔼 N C 𝔼 N f 𝔼 N E Btwn D f E f Cgr B C
56 4 53 54 9 55 syl112anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N E Btwn D f E f Cgr B C
57 56 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N B Btwn A C A B Cgr D E f 𝔼 N E Btwn D f E f Cgr B C
58 cgrextend N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N B Btwn A C E Btwn D f A B Cgr D E B C Cgr E f A C Cgr D f
59 18 40 21 22 28 58 syl113anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N B Btwn A C E Btwn D f A B Cgr D E B C Cgr E f A C Cgr D f
60 simpll A B Cgr D E B C Cgr E f A C Cgr D f A B Cgr D E
61 simpr A B Cgr D E B C Cgr E f A C Cgr D f A C Cgr D f
62 simplr A B Cgr D E B C Cgr E f A C Cgr D f B C Cgr E f
63 60 61 62 3jca A B Cgr D E B C Cgr E f A C Cgr D f A B Cgr D E A C Cgr D f B C Cgr E f
64 63 ex A B Cgr D E B C Cgr E f A C Cgr D f A B Cgr D E A C Cgr D f B C Cgr E f
65 64 adantl B Btwn A C E Btwn D f A B Cgr D E B C Cgr E f A C Cgr D f A B Cgr D E A C Cgr D f B C Cgr E f
66 59 65 sylcom N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N B Btwn A C E Btwn D f A B Cgr D E B C Cgr E f A B Cgr D E A C Cgr D f B C Cgr E f
67 an4 B Btwn A C A B Cgr D E E Btwn D f E f Cgr B C B Btwn A C E Btwn D f A B Cgr D E E f Cgr B C
68 cgrcom N E 𝔼 N f 𝔼 N B 𝔼 N C 𝔼 N E f Cgr B C B C Cgr E f
69 18 22 28 20 27 68 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N E f Cgr B C B C Cgr E f
70 69 anbi2d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A B Cgr D E E f Cgr B C A B Cgr D E B C Cgr E f
71 70 anbi2d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N B Btwn A C E Btwn D f A B Cgr D E E f Cgr B C B Btwn A C E Btwn D f A B Cgr D E B C Cgr E f
72 67 71 syl5bb N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N B Btwn A C A B Cgr D E E Btwn D f E f Cgr B C B Btwn A C E Btwn D f A B Cgr D E B C Cgr E f
73 66 72 42 3imtr4d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N B Btwn A C A B Cgr D E E Btwn D f E f Cgr B C A B C Cgr3 D E f
74 73 expdimp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N B Btwn A C A B Cgr D E E Btwn D f E f Cgr B C A B C Cgr3 D E f
75 74 an32s N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N B Btwn A C A B Cgr D E f 𝔼 N E Btwn D f E f Cgr B C A B C Cgr3 D E f
76 75 reximdva N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N B Btwn A C A B Cgr D E f 𝔼 N E Btwn D f E f Cgr B C f 𝔼 N A B C Cgr3 D E f
77 57 76 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N B Btwn A C A B Cgr D E f 𝔼 N A B C Cgr3 D E f
78 77 exp32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N B Btwn A C A B Cgr D E f 𝔼 N A B C Cgr3 D E f
79 52 78 sylbird N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N B Btwn C A A B Cgr D E f 𝔼 N A B C Cgr3 D E f
80 cgrxfr N A 𝔼 N C 𝔼 N B 𝔼 N D 𝔼 N E 𝔼 N C Btwn A B A B Cgr D E f 𝔼 N f Btwn D E A C B Cgr3 D f E
81 4 8 9 54 53 80 syl131anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N C Btwn A B A B Cgr D E f 𝔼 N f Btwn D E A C B Cgr3 D f E
82 cgr3permute1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A B C Cgr3 D E f A C B Cgr3 D f E
83 18 40 21 22 28 82 syl113anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A B C Cgr3 D E f A C B Cgr3 D f E
84 83 biimprd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N A C B Cgr3 D f E A B C Cgr3 D E f
85 84 adantld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N f Btwn D E A C B Cgr3 D f E A B C Cgr3 D E f
86 85 reximdva N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N f 𝔼 N f Btwn D E A C B Cgr3 D f E f 𝔼 N A B C Cgr3 D E f
87 81 86 syld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N C Btwn A B A B Cgr D E f 𝔼 N A B C Cgr3 D E f
88 87 expd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N C Btwn A B A B Cgr D E f 𝔼 N A B C Cgr3 D E f
89 48 79 88 3jaod N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N A Btwn B C B Btwn C A C Btwn A B A B Cgr D E f 𝔼 N A B C Cgr3 D E f
90 89 impd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N A Btwn B C B Btwn C A C Btwn A B A B Cgr D E f 𝔼 N A B C Cgr3 D E f
91 3 90 sylbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N A Colinear B C A B Cgr D E f 𝔼 N A B C Cgr3 D E f