Metamath Proof Explorer


Theorem brofs2

Description: Change some conditions for outer five segment predicate. (Contributed by Scott Fenton, 6-Oct-2013)

Ref Expression
Assertion brofs2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D OuterFiveSeg E F G H B Btwn A C A B C Cgr3 E F G A D Cgr E H B D Cgr F H

Proof

Step Hyp Ref Expression
1 brofs N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D OuterFiveSeg E F G H B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H
2 simpr1l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H B Btwn A C
3 simpr2l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H A B Cgr E F
4 simpr1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H B Btwn A C F Btwn E G
5 simpr2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H A B Cgr E F B C Cgr F G
6 4 5 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G
7 6 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G
8 simp11 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N N
9 simp12 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A 𝔼 N
10 simp13 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B 𝔼 N
11 simp21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N C 𝔼 N
12 simp23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N E 𝔼 N
13 simp31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N F 𝔼 N
14 simp32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N G 𝔼 N
15 cgrextend N A 𝔼 N B 𝔼 N C 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A C Cgr E G
16 8 9 10 11 12 13 14 15 syl133anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A C Cgr E G
17 7 16 syld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H A C Cgr E G
18 17 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H A C Cgr E G
19 simpr2r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H B C Cgr F G
20 3 18 19 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H A B Cgr E F A C Cgr E G B C Cgr F G
21 20 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H A B Cgr E F A C Cgr E G B C Cgr F G
22 brcgr3 N A 𝔼 N B 𝔼 N C 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N A B C Cgr3 E F G A B Cgr E F A C Cgr E G B C Cgr F G
23 8 9 10 11 12 13 14 22 syl133anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C Cgr3 E F G A B Cgr E F A C Cgr E G B C Cgr F G
24 21 23 sylibrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H A B C Cgr3 E F G
25 24 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H A B C Cgr3 E F G
26 simpr3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H A D Cgr E H B D Cgr F H
27 2 25 26 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H B Btwn A C A B C Cgr3 E F G A D Cgr E H B D Cgr F H
28 simpr1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C A B C Cgr3 E F G A D Cgr E H B D Cgr F H B Btwn A C
29 3simpa B Btwn A C A B C Cgr3 E F G A D Cgr E H B D Cgr F H B Btwn A C A B C Cgr3 E F G
30 btwnxfr N A 𝔼 N B 𝔼 N C 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N B Btwn A C A B C Cgr3 E F G F Btwn E G
31 8 9 10 11 12 13 14 30 syl133anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C A B C Cgr3 E F G F Btwn E G
32 29 31 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C A B C Cgr3 E F G A D Cgr E H B D Cgr F H F Btwn E G
33 32 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C A B C Cgr3 E F G A D Cgr E H B D Cgr F H F Btwn E G
34 28 33 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C A B C Cgr3 E F G A D Cgr E H B D Cgr F H B Btwn A C F Btwn E G
35 3simpb A B Cgr E F A C Cgr E G B C Cgr F G A B Cgr E F B C Cgr F G
36 23 35 syl6bi N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C Cgr3 E F G A B Cgr E F B C Cgr F G
37 36 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C Cgr3 E F G A B Cgr E F B C Cgr F G
38 37 3ad2antr2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C A B C Cgr3 E F G A D Cgr E H B D Cgr F H A B Cgr E F B C Cgr F G
39 simpr3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C A B C Cgr3 E F G A D Cgr E H B D Cgr F H A D Cgr E H B D Cgr F H
40 34 38 39 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C A B C Cgr3 E F G A D Cgr E H B D Cgr F H B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H
41 27 40 impbida N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H B Btwn A C A B C Cgr3 E F G A D Cgr E H B D Cgr F H
42 1 41 bitrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D OuterFiveSeg E F G H B Btwn A C A B C Cgr3 E F G A D Cgr E H B D Cgr F H