Metamath Proof Explorer


Theorem btwnxfr

Description: A condition for extending betweenness to a new set of points based on congruence with another set of points. Theorem 4.6 of Schwabhauser p. 36. (Contributed by Scott Fenton, 4-Oct-2013)

Ref Expression
Assertion btwnxfr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NBBtwnACABCCgr3DEFEBtwnDF

Proof

Step Hyp Ref Expression
1 brcgr3 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFABCgrDEACCgrDFBCCgrEF
2 simp2 ABCgrDEACCgrDFBCCgrEFACCgrDF
3 1 2 syl6bi NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFACCgrDF
4 simp1 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NN
5 simp21 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NA𝔼N
6 simp22 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NB𝔼N
7 simp23 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NC𝔼N
8 simp31 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼ND𝔼N
9 simp33 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NF𝔼N
10 cgrxfr NA𝔼NB𝔼NC𝔼ND𝔼NF𝔼NBBtwnACACCgrDFe𝔼NeBtwnDFABCCgr3DeF
11 4 5 6 7 8 9 10 syl132anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NBBtwnACACCgrDFe𝔼NeBtwnDFABCCgr3DeF
12 3 11 sylan2d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NBBtwnACABCCgr3DEFe𝔼NeBtwnDFABCCgr3DeF
13 12 imp NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NBBtwnACABCCgr3DEFe𝔼NeBtwnDFABCCgr3DeF
14 simprrl NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NBBtwnACABCCgr3DEFeBtwnDFABCCgr3DeFeBtwnDF
15 14 14 jca NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NBBtwnACABCCgr3DEFeBtwnDFABCCgr3DeFeBtwnDFeBtwnDF
16 simpl1 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NN
17 simpl31 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼ND𝔼N
18 simpl33 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NF𝔼N
19 16 17 18 cgrrflxd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NDFCgrDF
20 simpr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼Ne𝔼N
21 16 20 18 cgrrflxd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NeFCgreF
22 19 21 jca NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NDFCgrDFeFCgreF
23 22 adantr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NBBtwnACABCCgr3DEFeBtwnDFABCCgr3DeFDFCgrDFeFCgreF
24 simpr BBtwnACABCCgr3DEFABCCgr3DEF
25 simpr eBtwnDFABCCgr3DeFABCCgr3DeF
26 simpl2 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NA𝔼NB𝔼NC𝔼N
27 simpl3 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼ND𝔼NE𝔼NF𝔼N
28 17 20 18 3jca NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼ND𝔼Ne𝔼NF𝔼N
29 cgr3tr4 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼ND𝔼Ne𝔼NF𝔼NABCCgr3DEFABCCgr3DeFDEFCgr3DeF
30 16 26 27 28 29 syl13anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NABCCgr3DEFABCCgr3DeFDEFCgr3DeF
31 cgr3com ND𝔼NE𝔼NF𝔼ND𝔼Ne𝔼NF𝔼NDEFCgr3DeFDeFCgr3DEF
32 16 27 17 20 18 31 syl113anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NDEFCgr3DeFDeFCgr3DEF
33 simpl32 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NE𝔼N
34 brcgr3 ND𝔼Ne𝔼NF𝔼ND𝔼NE𝔼NF𝔼NDeFCgr3DEFDeCgrDEDFCgrDFeFCgrEF
35 16 17 20 18 17 33 18 34 syl133anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NDeFCgr3DEFDeCgrDEDFCgrDFeFCgrEF
36 simpr1 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NDeCgrDEDFCgrDFeFCgrEFDeCgrDE
37 simpr3 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NDeCgrDEDFCgrDFeFCgrEFeFCgrEF
38 16 20 18 33 18 37 cgrcomlrand NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NDeCgrDEDFCgrDFeFCgrEFFeCgrFE
39 36 38 jca NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NDeCgrDEDFCgrDFeFCgrEFDeCgrDEFeCgrFE
40 39 ex NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NDeCgrDEDFCgrDFeFCgrEFDeCgrDEFeCgrFE
41 35 40 sylbid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NDeFCgr3DEFDeCgrDEFeCgrFE
42 32 41 sylbid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NDEFCgr3DeFDeCgrDEFeCgrFE
43 30 42 syld NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NABCCgr3DEFABCCgr3DeFDeCgrDEFeCgrFE
44 24 25 43 syl2ani NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NBBtwnACABCCgr3DEFeBtwnDFABCCgr3DeFDeCgrDEFeCgrFE
45 44 imp NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NBBtwnACABCCgr3DEFeBtwnDFABCCgr3DeFDeCgrDEFeCgrFE
46 15 23 45 3jca NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NBBtwnACABCCgr3DEFeBtwnDFABCCgr3DeFeBtwnDFeBtwnDFDFCgrDFeFCgreFDeCgrDEFeCgrFE
47 46 ex NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NBBtwnACABCCgr3DEFeBtwnDFABCCgr3DeFeBtwnDFeBtwnDFDFCgrDFeFCgreFDeCgrDEFeCgrFE
48 brifs ND𝔼Ne𝔼NF𝔼Ne𝔼ND𝔼Ne𝔼NF𝔼NE𝔼NDeFeInnerFiveSegDeFEeBtwnDFeBtwnDFDFCgrDFeFCgreFDeCgrDEFeCgrFE
49 ifscgr ND𝔼Ne𝔼NF𝔼Ne𝔼ND𝔼Ne𝔼NF𝔼NE𝔼NDeFeInnerFiveSegDeFEeeCgreE
50 48 49 sylbird ND𝔼Ne𝔼NF𝔼Ne𝔼ND𝔼Ne𝔼NF𝔼NE𝔼NeBtwnDFeBtwnDFDFCgrDFeFCgreFDeCgrDEFeCgrFEeeCgreE
51 16 17 20 18 20 17 20 18 33 50 syl333anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NeBtwnDFeBtwnDFDFCgrDFeFCgreFDeCgrDEFeCgrFEeeCgreE
52 47 51 syld NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NBBtwnACABCCgr3DEFeBtwnDFABCCgr3DeFeeCgreE
53 cgrid2 Ne𝔼Ne𝔼NE𝔼NeeCgreEe=E
54 16 20 20 33 53 syl13anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NeeCgreEe=E
55 52 54 syld NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NBBtwnACABCCgr3DEFeBtwnDFABCCgr3DeFe=E
56 55 imp NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NBBtwnACABCCgr3DEFeBtwnDFABCCgr3DeFe=E
57 56 14 eqbrtrrd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NBBtwnACABCCgr3DEFeBtwnDFABCCgr3DeFEBtwnDF
58 57 expr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Ne𝔼NBBtwnACABCCgr3DEFeBtwnDFABCCgr3DeFEBtwnDF
59 58 an32s NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NBBtwnACABCCgr3DEFe𝔼NeBtwnDFABCCgr3DeFEBtwnDF
60 59 rexlimdva NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NBBtwnACABCCgr3DEFe𝔼NeBtwnDFABCCgr3DeFEBtwnDF
61 13 60 mpd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NBBtwnACABCCgr3DEFEBtwnDF
62 61 ex NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NBBtwnACABCCgr3DEFEBtwnDF