Metamath Proof Explorer


Theorem btwnxfr

Description: A condition for extending betweenness to a new set of points based on congruence with another set of points. Theorem 4.6 of Schwabhauser p. 36. (Contributed by Scott Fenton, 4-Oct-2013)

Ref Expression
Assertion btwnxfr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B Btwn A C A B C Cgr3 D E F E Btwn D F

Proof

Step Hyp Ref Expression
1 brcgr3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B C Cgr3 D E F A B Cgr D E A C Cgr D F B C Cgr E F
2 simp2 A B Cgr D E A C Cgr D F B C Cgr E F A C Cgr D F
3 1 2 syl6bi N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B C Cgr3 D E F A C Cgr D F
4 simp1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N N
5 simp21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A 𝔼 N
6 simp22 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B 𝔼 N
7 simp23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N C 𝔼 N
8 simp31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N D 𝔼 N
9 simp33 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N F 𝔼 N
10 cgrxfr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N B Btwn A C A C Cgr D F e 𝔼 N e Btwn D F A B C Cgr3 D e F
11 4 5 6 7 8 9 10 syl132anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B Btwn A C A C Cgr D F e 𝔼 N e Btwn D F A B C Cgr3 D e F
12 3 11 sylan2d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B Btwn A C A B C Cgr3 D E F e 𝔼 N e Btwn D F A B C Cgr3 D e F
13 12 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B Btwn A C A B C Cgr3 D E F e 𝔼 N e Btwn D F A B C Cgr3 D e F
14 simprrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N B Btwn A C A B C Cgr3 D E F e Btwn D F A B C Cgr3 D e F e Btwn D F
15 14 14 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N B Btwn A C A B C Cgr3 D E F e Btwn D F A B C Cgr3 D e F e Btwn D F e Btwn D F
16 simpl1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N N
17 simpl31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N D 𝔼 N
18 simpl33 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N F 𝔼 N
19 16 17 18 cgrrflxd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N D F Cgr D F
20 simpr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N e 𝔼 N
21 16 20 18 cgrrflxd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N e F Cgr e F
22 19 21 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N D F Cgr D F e F Cgr e F
23 22 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N B Btwn A C A B C Cgr3 D E F e Btwn D F A B C Cgr3 D e F D F Cgr D F e F Cgr e F
24 simpr B Btwn A C A B C Cgr3 D E F A B C Cgr3 D E F
25 simpr e Btwn D F A B C Cgr3 D e F A B C Cgr3 D e F
26 simpl2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N
27 simpl3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N
28 17 20 18 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N D 𝔼 N e 𝔼 N F 𝔼 N
29 cgr3tr4 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N D 𝔼 N e 𝔼 N F 𝔼 N A B C Cgr3 D E F A B C Cgr3 D e F D E F Cgr3 D e F
30 16 26 27 28 29 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N A B C Cgr3 D E F A B C Cgr3 D e F D E F Cgr3 D e F
31 cgr3com N D 𝔼 N E 𝔼 N F 𝔼 N D 𝔼 N e 𝔼 N F 𝔼 N D E F Cgr3 D e F D e F Cgr3 D E F
32 16 27 17 20 18 31 syl113anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N D E F Cgr3 D e F D e F Cgr3 D E F
33 simpl32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N E 𝔼 N
34 brcgr3 N D 𝔼 N e 𝔼 N F 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N D e F Cgr3 D E F D e Cgr D E D F Cgr D F e F Cgr E F
35 16 17 20 18 17 33 18 34 syl133anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N D e F Cgr3 D E F D e Cgr D E D F Cgr D F e F Cgr E F
36 simpr1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N D e Cgr D E D F Cgr D F e F Cgr E F D e Cgr D E
37 simpr3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N D e Cgr D E D F Cgr D F e F Cgr E F e F Cgr E F
38 16 20 18 33 18 37 cgrcomlrand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N D e Cgr D E D F Cgr D F e F Cgr E F F e Cgr F E
39 36 38 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N D e Cgr D E D F Cgr D F e F Cgr E F D e Cgr D E F e Cgr F E
40 39 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N D e Cgr D E D F Cgr D F e F Cgr E F D e Cgr D E F e Cgr F E
41 35 40 sylbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N D e F Cgr3 D E F D e Cgr D E F e Cgr F E
42 32 41 sylbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N D E F Cgr3 D e F D e Cgr D E F e Cgr F E
43 30 42 syld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N A B C Cgr3 D E F A B C Cgr3 D e F D e Cgr D E F e Cgr F E
44 24 25 43 syl2ani N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N B Btwn A C A B C Cgr3 D E F e Btwn D F A B C Cgr3 D e F D e Cgr D E F e Cgr F E
45 44 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N B Btwn A C A B C Cgr3 D E F e Btwn D F A B C Cgr3 D e F D e Cgr D E F e Cgr F E
46 15 23 45 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N B Btwn A C A B C Cgr3 D E F e Btwn D F A B C Cgr3 D e F e Btwn D F e Btwn D F D F Cgr D F e F Cgr e F D e Cgr D E F e Cgr F E
47 46 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N B Btwn A C A B C Cgr3 D E F e Btwn D F A B C Cgr3 D e F e Btwn D F e Btwn D F D F Cgr D F e F Cgr e F D e Cgr D E F e Cgr F E
48 brifs N D 𝔼 N e 𝔼 N F 𝔼 N e 𝔼 N D 𝔼 N e 𝔼 N F 𝔼 N E 𝔼 N D e F e InnerFiveSeg D e F E e Btwn D F e Btwn D F D F Cgr D F e F Cgr e F D e Cgr D E F e Cgr F E
49 ifscgr N D 𝔼 N e 𝔼 N F 𝔼 N e 𝔼 N D 𝔼 N e 𝔼 N F 𝔼 N E 𝔼 N D e F e InnerFiveSeg D e F E e e Cgr e E
50 48 49 sylbird N D 𝔼 N e 𝔼 N F 𝔼 N e 𝔼 N D 𝔼 N e 𝔼 N F 𝔼 N E 𝔼 N e Btwn D F e Btwn D F D F Cgr D F e F Cgr e F D e Cgr D E F e Cgr F E e e Cgr e E
51 16 17 20 18 20 17 20 18 33 50 syl333anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N e Btwn D F e Btwn D F D F Cgr D F e F Cgr e F D e Cgr D E F e Cgr F E e e Cgr e E
52 47 51 syld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N B Btwn A C A B C Cgr3 D E F e Btwn D F A B C Cgr3 D e F e e Cgr e E
53 cgrid2 N e 𝔼 N e 𝔼 N E 𝔼 N e e Cgr e E e = E
54 16 20 20 33 53 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N e e Cgr e E e = E
55 52 54 syld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N B Btwn A C A B C Cgr3 D E F e Btwn D F A B C Cgr3 D e F e = E
56 55 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N B Btwn A C A B C Cgr3 D E F e Btwn D F A B C Cgr3 D e F e = E
57 56 14 eqbrtrrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N B Btwn A C A B C Cgr3 D E F e Btwn D F A B C Cgr3 D e F E Btwn D F
58 57 expr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N e 𝔼 N B Btwn A C A B C Cgr3 D E F e Btwn D F A B C Cgr3 D e F E Btwn D F
59 58 an32s N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B Btwn A C A B C Cgr3 D E F e 𝔼 N e Btwn D F A B C Cgr3 D e F E Btwn D F
60 59 rexlimdva N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B Btwn A C A B C Cgr3 D E F e 𝔼 N e Btwn D F A B C Cgr3 D e F E Btwn D F
61 13 60 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B Btwn A C A B C Cgr3 D E F E Btwn D F
62 61 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B Btwn A C A B C Cgr3 D E F E Btwn D F