Step |
Hyp |
Ref |
Expression |
1 |
|
brcgr3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ↔ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐴 , 𝐶 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐸 , 𝐹 〉 ) ) ) |
2 |
|
simp2 |
⊢ ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐴 , 𝐶 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐸 , 𝐹 〉 ) → 〈 𝐴 , 𝐶 〉 Cgr 〈 𝐷 , 𝐹 〉 ) |
3 |
1 2
|
syl6bi |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 → 〈 𝐴 , 𝐶 〉 Cgr 〈 𝐷 , 𝐹 〉 ) ) |
4 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
5 |
|
simp21 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
6 |
|
simp22 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) |
7 |
|
simp23 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
8 |
|
simp31 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) |
9 |
|
simp33 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) |
10 |
|
cgrxfr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 𝐶 〉 Cgr 〈 𝐷 , 𝐹 〉 ) → ∃ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) ) ) |
11 |
4 5 6 7 8 9 10
|
syl132anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 𝐶 〉 Cgr 〈 𝐷 , 𝐹 〉 ) → ∃ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) ) ) |
12 |
3 11
|
sylan2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) → ∃ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) ) ) |
13 |
12
|
imp |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) ) → ∃ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) ) |
14 |
|
simprrl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) ∧ ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) ) ) → 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ) |
15 |
14 14
|
jca |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) ∧ ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) ) ) → ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ) ) |
16 |
|
simpl1 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑁 ∈ ℕ ) |
17 |
|
simpl31 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) |
18 |
|
simpl33 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) |
19 |
16 17 18
|
cgrrflxd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → 〈 𝐷 , 𝐹 〉 Cgr 〈 𝐷 , 𝐹 〉 ) |
20 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) |
21 |
16 20 18
|
cgrrflxd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → 〈 𝑒 , 𝐹 〉 Cgr 〈 𝑒 , 𝐹 〉 ) |
22 |
19 21
|
jca |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 〈 𝐷 , 𝐹 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝑒 , 𝐹 〉 Cgr 〈 𝑒 , 𝐹 〉 ) ) |
23 |
22
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) ∧ ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) ) ) → ( 〈 𝐷 , 𝐹 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝑒 , 𝐹 〉 Cgr 〈 𝑒 , 𝐹 〉 ) ) |
24 |
|
simpr |
⊢ ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) → 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) |
25 |
|
simpr |
⊢ ( ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) → 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) |
26 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
27 |
|
simpl3 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
28 |
17 20 18
|
3jca |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
29 |
|
cgr3tr4 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) → ( ( 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) → 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) ) |
30 |
16 26 27 28 29
|
syl13anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) → 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) ) |
31 |
|
cgr3com |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ↔ 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) ) |
32 |
16 27 17 20 18 31
|
syl113anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ↔ 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) ) |
33 |
|
simpl32 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) |
34 |
|
brcgr3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ↔ ( 〈 𝐷 , 𝑒 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐷 , 𝐹 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝑒 , 𝐹 〉 Cgr 〈 𝐸 , 𝐹 〉 ) ) ) |
35 |
16 17 20 18 17 33 18 34
|
syl133anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ↔ ( 〈 𝐷 , 𝑒 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐷 , 𝐹 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝑒 , 𝐹 〉 Cgr 〈 𝐸 , 𝐹 〉 ) ) ) |
36 |
|
simpr1 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 〈 𝐷 , 𝑒 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐷 , 𝐹 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝑒 , 𝐹 〉 Cgr 〈 𝐸 , 𝐹 〉 ) ) → 〈 𝐷 , 𝑒 〉 Cgr 〈 𝐷 , 𝐸 〉 ) |
37 |
|
simpr3 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 〈 𝐷 , 𝑒 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐷 , 𝐹 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝑒 , 𝐹 〉 Cgr 〈 𝐸 , 𝐹 〉 ) ) → 〈 𝑒 , 𝐹 〉 Cgr 〈 𝐸 , 𝐹 〉 ) |
38 |
16 20 18 33 18 37
|
cgrcomlrand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 〈 𝐷 , 𝑒 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐷 , 𝐹 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝑒 , 𝐹 〉 Cgr 〈 𝐸 , 𝐹 〉 ) ) → 〈 𝐹 , 𝑒 〉 Cgr 〈 𝐹 , 𝐸 〉 ) |
39 |
36 38
|
jca |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 〈 𝐷 , 𝑒 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐷 , 𝐹 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝑒 , 𝐹 〉 Cgr 〈 𝐸 , 𝐹 〉 ) ) → ( 〈 𝐷 , 𝑒 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐹 , 𝑒 〉 Cgr 〈 𝐹 , 𝐸 〉 ) ) |
40 |
39
|
ex |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 〈 𝐷 , 𝑒 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐷 , 𝐹 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝑒 , 𝐹 〉 Cgr 〈 𝐸 , 𝐹 〉 ) → ( 〈 𝐷 , 𝑒 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐹 , 𝑒 〉 Cgr 〈 𝐹 , 𝐸 〉 ) ) ) |
41 |
35 40
|
sylbid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 → ( 〈 𝐷 , 𝑒 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐹 , 𝑒 〉 Cgr 〈 𝐹 , 𝐸 〉 ) ) ) |
42 |
32 41
|
sylbid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 → ( 〈 𝐷 , 𝑒 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐹 , 𝑒 〉 Cgr 〈 𝐹 , 𝐸 〉 ) ) ) |
43 |
30 42
|
syld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) → ( 〈 𝐷 , 𝑒 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐹 , 𝑒 〉 Cgr 〈 𝐹 , 𝐸 〉 ) ) ) |
44 |
24 25 43
|
syl2ani |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) ∧ ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) ) → ( 〈 𝐷 , 𝑒 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐹 , 𝑒 〉 Cgr 〈 𝐹 , 𝐸 〉 ) ) ) |
45 |
44
|
imp |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) ∧ ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) ) ) → ( 〈 𝐷 , 𝑒 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐹 , 𝑒 〉 Cgr 〈 𝐹 , 𝐸 〉 ) ) |
46 |
15 23 45
|
3jca |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) ∧ ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) ) ) → ( ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ) ∧ ( 〈 𝐷 , 𝐹 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝑒 , 𝐹 〉 Cgr 〈 𝑒 , 𝐹 〉 ) ∧ ( 〈 𝐷 , 𝑒 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐹 , 𝑒 〉 Cgr 〈 𝐹 , 𝐸 〉 ) ) ) |
47 |
46
|
ex |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) ∧ ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) ) → ( ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ) ∧ ( 〈 𝐷 , 𝐹 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝑒 , 𝐹 〉 Cgr 〈 𝑒 , 𝐹 〉 ) ∧ ( 〈 𝐷 , 𝑒 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐹 , 𝑒 〉 Cgr 〈 𝐹 , 𝐸 〉 ) ) ) ) |
48 |
|
brifs |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 〈 𝐷 , 𝑒 〉 , 〈 𝐹 , 𝑒 〉 〉 InnerFiveSeg 〈 〈 𝐷 , 𝑒 〉 , 〈 𝐹 , 𝐸 〉 〉 ↔ ( ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ) ∧ ( 〈 𝐷 , 𝐹 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝑒 , 𝐹 〉 Cgr 〈 𝑒 , 𝐹 〉 ) ∧ ( 〈 𝐷 , 𝑒 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐹 , 𝑒 〉 Cgr 〈 𝐹 , 𝐸 〉 ) ) ) ) |
49 |
|
ifscgr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 〈 𝐷 , 𝑒 〉 , 〈 𝐹 , 𝑒 〉 〉 InnerFiveSeg 〈 〈 𝐷 , 𝑒 〉 , 〈 𝐹 , 𝐸 〉 〉 → 〈 𝑒 , 𝑒 〉 Cgr 〈 𝑒 , 𝐸 〉 ) ) |
50 |
48 49
|
sylbird |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ) ∧ ( 〈 𝐷 , 𝐹 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝑒 , 𝐹 〉 Cgr 〈 𝑒 , 𝐹 〉 ) ∧ ( 〈 𝐷 , 𝑒 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐹 , 𝑒 〉 Cgr 〈 𝐹 , 𝐸 〉 ) ) → 〈 𝑒 , 𝑒 〉 Cgr 〈 𝑒 , 𝐸 〉 ) ) |
51 |
16 17 20 18 20 17 20 18 33 50
|
syl333anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ) ∧ ( 〈 𝐷 , 𝐹 〉 Cgr 〈 𝐷 , 𝐹 〉 ∧ 〈 𝑒 , 𝐹 〉 Cgr 〈 𝑒 , 𝐹 〉 ) ∧ ( 〈 𝐷 , 𝑒 〉 Cgr 〈 𝐷 , 𝐸 〉 ∧ 〈 𝐹 , 𝑒 〉 Cgr 〈 𝐹 , 𝐸 〉 ) ) → 〈 𝑒 , 𝑒 〉 Cgr 〈 𝑒 , 𝐸 〉 ) ) |
52 |
47 51
|
syld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) ∧ ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) ) → 〈 𝑒 , 𝑒 〉 Cgr 〈 𝑒 , 𝐸 〉 ) ) |
53 |
|
cgrid2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑒 , 𝑒 〉 Cgr 〈 𝑒 , 𝐸 〉 → 𝑒 = 𝐸 ) ) |
54 |
16 20 20 33 53
|
syl13anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 〈 𝑒 , 𝑒 〉 Cgr 〈 𝑒 , 𝐸 〉 → 𝑒 = 𝐸 ) ) |
55 |
52 54
|
syld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) ∧ ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) ) → 𝑒 = 𝐸 ) ) |
56 |
55
|
imp |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) ∧ ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) ) ) → 𝑒 = 𝐸 ) |
57 |
56 14
|
eqbrtrrd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) ∧ ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) ) ) → 𝐸 Btwn 〈 𝐷 , 𝐹 〉 ) |
58 |
57
|
expr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) ) → ( ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) → 𝐸 Btwn 〈 𝐷 , 𝐹 〉 ) ) |
59 |
58
|
an32s |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) ) ∧ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) → 𝐸 Btwn 〈 𝐷 , 𝐹 〉 ) ) |
60 |
59
|
rexlimdva |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) ) → ( ∃ 𝑒 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑒 Btwn 〈 𝐷 , 𝐹 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝑒 , 𝐹 〉 〉 ) → 𝐸 Btwn 〈 𝐷 , 𝐹 〉 ) ) |
61 |
13 60
|
mpd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) ) → 𝐸 Btwn 〈 𝐷 , 𝐹 〉 ) |
62 |
61
|
ex |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 〈 𝐴 , 〈 𝐵 , 𝐶 〉 〉 Cgr3 〈 𝐷 , 〈 𝐸 , 𝐹 〉 〉 ) → 𝐸 Btwn 〈 𝐷 , 𝐹 〉 ) ) |