Metamath Proof Explorer


Theorem cgr3com

Description: Commutativity law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013)

Ref Expression
Assertion cgr3com ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ↔ ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ Cgr3 ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ) )

Proof

Step Hyp Ref Expression
1 id ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ )
2 3simpa ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) )
3 3simpa ( ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) )
4 cgrcom ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐷 , 𝐸 ⟩ ↔ ⟨ 𝐷 , 𝐸 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) )
5 1 2 3 4 syl3an ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐷 , 𝐸 ⟩ ↔ ⟨ 𝐷 , 𝐸 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) )
6 3simpb ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) )
7 3simpb ( ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) )
8 cgrcom ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐶 ⟩ Cgr ⟨ 𝐷 , 𝐹 ⟩ ↔ ⟨ 𝐷 , 𝐹 ⟩ Cgr ⟨ 𝐴 , 𝐶 ⟩ ) )
9 1 6 7 8 syl3an ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐶 ⟩ Cgr ⟨ 𝐷 , 𝐹 ⟩ ↔ ⟨ 𝐷 , 𝐹 ⟩ Cgr ⟨ 𝐴 , 𝐶 ⟩ ) )
10 3simpc ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) )
11 3simpc ( ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) )
12 cgrcom ( ( 𝑁 ∈ ℕ ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ↔ ⟨ 𝐸 , 𝐹 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) )
13 1 10 11 12 syl3an ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ↔ ⟨ 𝐸 , 𝐹 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) )
14 5 9 13 3anbi123d ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐷 , 𝐸 ⟩ ∧ ⟨ 𝐴 , 𝐶 ⟩ Cgr ⟨ 𝐷 , 𝐹 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ) ↔ ( ⟨ 𝐷 , 𝐸 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐷 , 𝐹 ⟩ Cgr ⟨ 𝐴 , 𝐶 ⟩ ∧ ⟨ 𝐸 , 𝐹 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) ) )
15 brcgr3 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ↔ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐷 , 𝐸 ⟩ ∧ ⟨ 𝐴 , 𝐶 ⟩ Cgr ⟨ 𝐷 , 𝐹 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ) ) )
16 brcgr3 ( ( 𝑁 ∈ ℕ ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ Cgr3 ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ↔ ( ⟨ 𝐷 , 𝐸 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐷 , 𝐹 ⟩ Cgr ⟨ 𝐴 , 𝐶 ⟩ ∧ ⟨ 𝐸 , 𝐹 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) ) )
17 16 3com23 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ Cgr3 ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ↔ ( ⟨ 𝐷 , 𝐸 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐷 , 𝐹 ⟩ Cgr ⟨ 𝐴 , 𝐶 ⟩ ∧ ⟨ 𝐸 , 𝐹 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) ) )
18 14 15 17 3bitr4d ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ↔ ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ Cgr3 ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ) )