Metamath Proof Explorer


Theorem cgr3rflx

Description: Identity law for three-place congruence. (Contributed by Scott Fenton, 6-Oct-2013)

Ref Expression
Assertion cgr3rflx ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ )

Proof

Step Hyp Ref Expression
1 cgrrflx ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ )
2 1 3adant3r3 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ )
3 cgrrflx ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → ⟨ 𝐴 , 𝐶 ⟩ Cgr ⟨ 𝐴 , 𝐶 ⟩ )
4 3 3adant3r2 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ⟨ 𝐴 , 𝐶 ⟩ Cgr ⟨ 𝐴 , 𝐶 ⟩ )
5 cgrrflx ( ( 𝑁 ∈ ℕ ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ )
6 5 3adant3r1 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ )
7 brcgr3 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ↔ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐴 , 𝐶 ⟩ Cgr ⟨ 𝐴 , 𝐶 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) ) )
8 7 3anidm23 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ↔ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐴 , 𝐶 ⟩ Cgr ⟨ 𝐴 , 𝐶 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) ) )
9 2 4 6 8 mpbir3and ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ )