Step |
Hyp |
Ref |
Expression |
1 |
|
cgrrflx |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. Cgr <. A , B >. ) |
2 |
1
|
3adant3r3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> <. A , B >. Cgr <. A , B >. ) |
3 |
|
cgrrflx |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> <. A , C >. Cgr <. A , C >. ) |
4 |
3
|
3adant3r2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> <. A , C >. Cgr <. A , C >. ) |
5 |
|
cgrrflx |
|- ( ( N e. NN /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> <. B , C >. Cgr <. B , C >. ) |
6 |
5
|
3adant3r1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> <. B , C >. Cgr <. B , C >. ) |
7 |
|
brcgr3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. <-> ( <. A , B >. Cgr <. A , B >. /\ <. A , C >. Cgr <. A , C >. /\ <. B , C >. Cgr <. B , C >. ) ) ) |
8 |
7
|
3anidm23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. <-> ( <. A , B >. Cgr <. A , B >. /\ <. A , C >. Cgr <. A , C >. /\ <. B , C >. Cgr <. B , C >. ) ) ) |
9 |
2 4 6 8
|
mpbir3and |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. ) |