Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> N e. NN ) |
2 |
|
simpl3r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> F e. ( EE ` N ) ) |
3 |
|
simpl3l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> D e. ( EE ` N ) ) |
4 |
|
btwndiff |
|- ( ( N e. NN /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> E. g e. ( EE ` N ) ( D Btwn <. F , g >. /\ D =/= g ) ) |
5 |
1 2 3 4
|
syl3anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> E. g e. ( EE ` N ) ( D Btwn <. F , g >. /\ D =/= g ) ) |
6 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) -> N e. NN ) |
7 |
|
simpr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) -> g e. ( EE ` N ) ) |
8 |
|
simpl3l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) -> D e. ( EE ` N ) ) |
9 |
|
simpl21 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) -> A e. ( EE ` N ) ) |
10 |
|
simpl22 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) -> B e. ( EE ` N ) ) |
11 |
|
axsegcon |
|- ( ( N e. NN /\ ( g e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> E. e e. ( EE ` N ) ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) |
12 |
6 7 8 9 10 11
|
syl122anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) -> E. e e. ( EE ` N ) ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) |
13 |
12
|
adantr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) ) -> E. e e. ( EE ` N ) ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) |
14 |
|
anass |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ e e. ( EE ` N ) ) <-> ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) ) |
15 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> N e. NN ) |
16 |
|
simprl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> g e. ( EE ` N ) ) |
17 |
|
simprr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> e e. ( EE ` N ) ) |
18 |
|
simpl22 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
19 |
|
simpl23 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
20 |
|
axsegcon |
|- ( ( N e. NN /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. f e. ( EE ` N ) ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) |
21 |
15 16 17 18 19 20
|
syl122anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> E. f e. ( EE ` N ) ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) |
22 |
21
|
adantr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> E. f e. ( EE ` N ) ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) |
23 |
|
anass |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) <-> ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) /\ f e. ( EE ` N ) ) ) ) |
24 |
|
df-3an |
|- ( ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) <-> ( ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) /\ f e. ( EE ` N ) ) ) |
25 |
24
|
anbi2i |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) <-> ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) /\ f e. ( EE ` N ) ) ) ) |
26 |
23 25
|
bitr4i |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) <-> ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) ) |
27 |
|
simplrr |
|- ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) -> D =/= g ) |
28 |
27
|
ad2antrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> D =/= g ) |
29 |
28
|
necomd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> g =/= D ) |
30 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> N e. NN ) |
31 |
|
simpr1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> g e. ( EE ` N ) ) |
32 |
|
simpl3l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
33 |
|
simpr2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> e e. ( EE ` N ) ) |
34 |
|
simpr3 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> f e. ( EE ` N ) ) |
35 |
|
simprl |
|- ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) -> D Btwn <. g , e >. ) |
36 |
35
|
ad2antrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> D Btwn <. g , e >. ) |
37 |
|
simprrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> e Btwn <. g , f >. ) |
38 |
30 31 32 33 34 36 37
|
btwnexchand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> D Btwn <. g , f >. ) |
39 |
|
simpl21 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
40 |
|
simpl22 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
41 |
|
simpl23 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
42 |
30 31 32 33 34 36 37
|
btwnexch3and |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> e Btwn <. D , f >. ) |
43 |
|
simplll |
|- ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) -> B Btwn <. A , C >. ) |
44 |
43
|
ad2antrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> B Btwn <. A , C >. ) |
45 |
|
simprr |
|- ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) -> <. D , e >. Cgr <. A , B >. ) |
46 |
45
|
ad2antrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> <. D , e >. Cgr <. A , B >. ) |
47 |
|
simprrr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> <. e , f >. Cgr <. B , C >. ) |
48 |
30 32 33 34 39 40 41 42 44 46 47
|
cgrextendand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> <. D , f >. Cgr <. A , C >. ) |
49 |
38 48
|
jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> ( D Btwn <. g , f >. /\ <. D , f >. Cgr <. A , C >. ) ) |
50 |
|
simpl3r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> F e. ( EE ` N ) ) |
51 |
|
simplrl |
|- ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) -> D Btwn <. F , g >. ) |
52 |
51
|
ad2antrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> D Btwn <. F , g >. ) |
53 |
30 32 50 31 52
|
btwncomand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> D Btwn <. g , F >. ) |
54 |
|
simpllr |
|- ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) -> <. A , C >. Cgr <. D , F >. ) |
55 |
54
|
ad2antrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> <. A , C >. Cgr <. D , F >. ) |
56 |
30 39 41 32 50 55
|
cgrcomand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> <. D , F >. Cgr <. A , C >. ) |
57 |
53 56
|
jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> ( D Btwn <. g , F >. /\ <. D , F >. Cgr <. A , C >. ) ) |
58 |
29 49 57
|
3jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> ( g =/= D /\ ( D Btwn <. g , f >. /\ <. D , f >. Cgr <. A , C >. ) /\ ( D Btwn <. g , F >. /\ <. D , F >. Cgr <. A , C >. ) ) ) |
59 |
58
|
ex |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) -> ( g =/= D /\ ( D Btwn <. g , f >. /\ <. D , f >. Cgr <. A , C >. ) /\ ( D Btwn <. g , F >. /\ <. D , F >. Cgr <. A , C >. ) ) ) ) |
60 |
|
segconeq |
|- ( ( N e. NN /\ ( D e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( g e. ( EE ` N ) /\ f e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( g =/= D /\ ( D Btwn <. g , f >. /\ <. D , f >. Cgr <. A , C >. ) /\ ( D Btwn <. g , F >. /\ <. D , F >. Cgr <. A , C >. ) ) -> f = F ) ) |
61 |
30 32 39 41 31 34 50 60
|
syl133anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( g =/= D /\ ( D Btwn <. g , f >. /\ <. D , f >. Cgr <. A , C >. ) /\ ( D Btwn <. g , F >. /\ <. D , F >. Cgr <. A , C >. ) ) -> f = F ) ) |
62 |
59 61
|
syld |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) -> f = F ) ) |
63 |
62
|
imp |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> f = F ) |
64 |
|
opeq2 |
|- ( f = F -> <. g , f >. = <. g , F >. ) |
65 |
64
|
breq2d |
|- ( f = F -> ( e Btwn <. g , f >. <-> e Btwn <. g , F >. ) ) |
66 |
|
opeq2 |
|- ( f = F -> <. e , f >. = <. e , F >. ) |
67 |
66
|
breq1d |
|- ( f = F -> ( <. e , f >. Cgr <. B , C >. <-> <. e , F >. Cgr <. B , C >. ) ) |
68 |
65 67
|
anbi12d |
|- ( f = F -> ( ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) <-> ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) |
69 |
68
|
biimpa |
|- ( ( f = F /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) -> ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) |
70 |
|
simpl |
|- ( ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) -> e Btwn <. g , F >. ) |
71 |
|
btwnexch3 |
|- ( ( N e. NN /\ ( g e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( e e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( D Btwn <. g , e >. /\ e Btwn <. g , F >. ) -> e Btwn <. D , F >. ) ) |
72 |
30 31 32 33 50 71
|
syl122anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( D Btwn <. g , e >. /\ e Btwn <. g , F >. ) -> e Btwn <. D , F >. ) ) |
73 |
35 70 72
|
syl2ani |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) -> e Btwn <. D , F >. ) ) |
74 |
73
|
imp |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> e Btwn <. D , F >. ) |
75 |
|
simplrr |
|- ( ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) -> <. D , e >. Cgr <. A , B >. ) |
76 |
75
|
adantl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> <. D , e >. Cgr <. A , B >. ) |
77 |
30 32 33 39 40 76
|
cgrcomand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> <. A , B >. Cgr <. D , e >. ) |
78 |
54
|
ad2antrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> <. A , C >. Cgr <. D , F >. ) |
79 |
|
simprrr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> <. e , F >. Cgr <. B , C >. ) |
80 |
30 33 50 40 41 79
|
cgrcomand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> <. B , C >. Cgr <. e , F >. ) |
81 |
|
brcgr3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ e e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. <-> ( <. A , B >. Cgr <. D , e >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. e , F >. ) ) ) |
82 |
30 39 40 41 32 33 50 81
|
syl133anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. <-> ( <. A , B >. Cgr <. D , e >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. e , F >. ) ) ) |
83 |
82
|
adantr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. <-> ( <. A , B >. Cgr <. D , e >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. e , F >. ) ) ) |
84 |
77 78 80 83
|
mpbir3and |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) |
85 |
74 84
|
jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) |
86 |
85
|
expr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
87 |
69 86
|
syl5 |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( ( f = F /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
88 |
87
|
expcomd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) -> ( f = F -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) ) |
89 |
88
|
impr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> ( f = F -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
90 |
63 89
|
mpd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) |
91 |
90
|
expr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
92 |
26 91
|
sylanb |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
93 |
92
|
an32s |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) /\ f e. ( EE ` N ) ) -> ( ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
94 |
93
|
rexlimdva |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( E. f e. ( EE ` N ) ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
95 |
22 94
|
mpd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) |
96 |
95
|
expr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) ) -> ( ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
97 |
14 96
|
sylanb |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ e e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) ) -> ( ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
98 |
97
|
an32s |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) ) /\ e e. ( EE ` N ) ) -> ( ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
99 |
98
|
reximdva |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) ) -> ( E. e e. ( EE ` N ) ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
100 |
13 99
|
mpd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) |
101 |
100
|
expr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> ( ( D Btwn <. F , g >. /\ D =/= g ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
102 |
101
|
an32s |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) /\ g e. ( EE ` N ) ) -> ( ( D Btwn <. F , g >. /\ D =/= g ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
103 |
102
|
rexlimdva |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> ( E. g e. ( EE ` N ) ( D Btwn <. F , g >. /\ D =/= g ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
104 |
5 103
|
mpd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) |
105 |
104
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |