| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> N e. NN ) | 
						
							| 2 |  | simpl3r |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> F e. ( EE ` N ) ) | 
						
							| 3 |  | simpl3l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> D e. ( EE ` N ) ) | 
						
							| 4 |  | btwndiff |  |-  ( ( N e. NN /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> E. g e. ( EE ` N ) ( D Btwn <. F , g >. /\ D =/= g ) ) | 
						
							| 5 | 1 2 3 4 | syl3anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> E. g e. ( EE ` N ) ( D Btwn <. F , g >. /\ D =/= g ) ) | 
						
							| 6 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 7 |  | simpr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) -> g e. ( EE ` N ) ) | 
						
							| 8 |  | simpl3l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) -> D e. ( EE ` N ) ) | 
						
							| 9 |  | simpl21 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) -> A e. ( EE ` N ) ) | 
						
							| 10 |  | simpl22 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) -> B e. ( EE ` N ) ) | 
						
							| 11 |  | axsegcon |  |-  ( ( N e. NN /\ ( g e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> E. e e. ( EE ` N ) ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) | 
						
							| 12 | 6 7 8 9 10 11 | syl122anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) -> E. e e. ( EE ` N ) ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) ) -> E. e e. ( EE ` N ) ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) | 
						
							| 14 |  | anass |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ e e. ( EE ` N ) ) <-> ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) ) | 
						
							| 15 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 16 |  | simprl |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> g e. ( EE ` N ) ) | 
						
							| 17 |  | simprr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> e e. ( EE ` N ) ) | 
						
							| 18 |  | simpl22 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 19 |  | simpl23 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 20 |  | axsegcon |  |-  ( ( N e. NN /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. f e. ( EE ` N ) ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) | 
						
							| 21 | 15 16 17 18 19 20 | syl122anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> E. f e. ( EE ` N ) ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> E. f e. ( EE ` N ) ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) | 
						
							| 23 |  | anass |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) <-> ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) /\ f e. ( EE ` N ) ) ) ) | 
						
							| 24 |  | df-3an |  |-  ( ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) <-> ( ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) /\ f e. ( EE ` N ) ) ) | 
						
							| 25 | 24 | anbi2i |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) <-> ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) /\ f e. ( EE ` N ) ) ) ) | 
						
							| 26 | 23 25 | bitr4i |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) <-> ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) ) | 
						
							| 27 |  | simplrr |  |-  ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) -> D =/= g ) | 
						
							| 28 | 27 | ad2antrl |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> D =/= g ) | 
						
							| 29 | 28 | necomd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> g =/= D ) | 
						
							| 30 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 31 |  | simpr1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> g e. ( EE ` N ) ) | 
						
							| 32 |  | simpl3l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 33 |  | simpr2 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> e e. ( EE ` N ) ) | 
						
							| 34 |  | simpr3 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> f e. ( EE ` N ) ) | 
						
							| 35 |  | simprl |  |-  ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) -> D Btwn <. g , e >. ) | 
						
							| 36 | 35 | ad2antrl |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> D Btwn <. g , e >. ) | 
						
							| 37 |  | simprrl |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> e Btwn <. g , f >. ) | 
						
							| 38 | 30 31 32 33 34 36 37 | btwnexchand |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> D Btwn <. g , f >. ) | 
						
							| 39 |  | simpl21 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 40 |  | simpl22 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 41 |  | simpl23 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 42 | 30 31 32 33 34 36 37 | btwnexch3and |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> e Btwn <. D , f >. ) | 
						
							| 43 |  | simplll |  |-  ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) -> B Btwn <. A , C >. ) | 
						
							| 44 | 43 | ad2antrl |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> B Btwn <. A , C >. ) | 
						
							| 45 |  | simprr |  |-  ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) -> <. D , e >. Cgr <. A , B >. ) | 
						
							| 46 | 45 | ad2antrl |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> <. D , e >. Cgr <. A , B >. ) | 
						
							| 47 |  | simprrr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> <. e , f >. Cgr <. B , C >. ) | 
						
							| 48 | 30 32 33 34 39 40 41 42 44 46 47 | cgrextendand |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> <. D , f >. Cgr <. A , C >. ) | 
						
							| 49 | 38 48 | jca |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> ( D Btwn <. g , f >. /\ <. D , f >. Cgr <. A , C >. ) ) | 
						
							| 50 |  | simpl3r |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> F e. ( EE ` N ) ) | 
						
							| 51 |  | simplrl |  |-  ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) -> D Btwn <. F , g >. ) | 
						
							| 52 | 51 | ad2antrl |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> D Btwn <. F , g >. ) | 
						
							| 53 | 30 32 50 31 52 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> D Btwn <. g , F >. ) | 
						
							| 54 |  | simpllr |  |-  ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) -> <. A , C >. Cgr <. D , F >. ) | 
						
							| 55 | 54 | ad2antrl |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> <. A , C >. Cgr <. D , F >. ) | 
						
							| 56 | 30 39 41 32 50 55 | cgrcomand |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> <. D , F >. Cgr <. A , C >. ) | 
						
							| 57 | 53 56 | jca |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> ( D Btwn <. g , F >. /\ <. D , F >. Cgr <. A , C >. ) ) | 
						
							| 58 | 29 49 57 | 3jca |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> ( g =/= D /\ ( D Btwn <. g , f >. /\ <. D , f >. Cgr <. A , C >. ) /\ ( D Btwn <. g , F >. /\ <. D , F >. Cgr <. A , C >. ) ) ) | 
						
							| 59 | 58 | ex |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) -> ( g =/= D /\ ( D Btwn <. g , f >. /\ <. D , f >. Cgr <. A , C >. ) /\ ( D Btwn <. g , F >. /\ <. D , F >. Cgr <. A , C >. ) ) ) ) | 
						
							| 60 |  | segconeq |  |-  ( ( N e. NN /\ ( D e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( g e. ( EE ` N ) /\ f e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( g =/= D /\ ( D Btwn <. g , f >. /\ <. D , f >. Cgr <. A , C >. ) /\ ( D Btwn <. g , F >. /\ <. D , F >. Cgr <. A , C >. ) ) -> f = F ) ) | 
						
							| 61 | 30 32 39 41 31 34 50 60 | syl133anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( g =/= D /\ ( D Btwn <. g , f >. /\ <. D , f >. Cgr <. A , C >. ) /\ ( D Btwn <. g , F >. /\ <. D , F >. Cgr <. A , C >. ) ) -> f = F ) ) | 
						
							| 62 | 59 61 | syld |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) -> f = F ) ) | 
						
							| 63 | 62 | imp |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> f = F ) | 
						
							| 64 |  | opeq2 |  |-  ( f = F -> <. g , f >. = <. g , F >. ) | 
						
							| 65 | 64 | breq2d |  |-  ( f = F -> ( e Btwn <. g , f >. <-> e Btwn <. g , F >. ) ) | 
						
							| 66 |  | opeq2 |  |-  ( f = F -> <. e , f >. = <. e , F >. ) | 
						
							| 67 | 66 | breq1d |  |-  ( f = F -> ( <. e , f >. Cgr <. B , C >. <-> <. e , F >. Cgr <. B , C >. ) ) | 
						
							| 68 | 65 67 | anbi12d |  |-  ( f = F -> ( ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) <-> ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) | 
						
							| 69 | 68 | biimpa |  |-  ( ( f = F /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) -> ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) | 
						
							| 70 |  | simpl |  |-  ( ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) -> e Btwn <. g , F >. ) | 
						
							| 71 |  | btwnexch3 |  |-  ( ( N e. NN /\ ( g e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( e e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( D Btwn <. g , e >. /\ e Btwn <. g , F >. ) -> e Btwn <. D , F >. ) ) | 
						
							| 72 | 30 31 32 33 50 71 | syl122anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( D Btwn <. g , e >. /\ e Btwn <. g , F >. ) -> e Btwn <. D , F >. ) ) | 
						
							| 73 | 35 70 72 | syl2ani |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) -> e Btwn <. D , F >. ) ) | 
						
							| 74 | 73 | imp |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> e Btwn <. D , F >. ) | 
						
							| 75 |  | simplrr |  |-  ( ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) -> <. D , e >. Cgr <. A , B >. ) | 
						
							| 76 | 75 | adantl |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> <. D , e >. Cgr <. A , B >. ) | 
						
							| 77 | 30 32 33 39 40 76 | cgrcomand |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> <. A , B >. Cgr <. D , e >. ) | 
						
							| 78 | 54 | ad2antrl |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> <. A , C >. Cgr <. D , F >. ) | 
						
							| 79 |  | simprrr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> <. e , F >. Cgr <. B , C >. ) | 
						
							| 80 | 30 33 50 40 41 79 | cgrcomand |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> <. B , C >. Cgr <. e , F >. ) | 
						
							| 81 |  | brcgr3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ e e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. <-> ( <. A , B >. Cgr <. D , e >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. e , F >. ) ) ) | 
						
							| 82 | 30 39 40 41 32 33 50 81 | syl133anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. <-> ( <. A , B >. Cgr <. D , e >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. e , F >. ) ) ) | 
						
							| 83 | 82 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. <-> ( <. A , B >. Cgr <. D , e >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. e , F >. ) ) ) | 
						
							| 84 | 77 78 80 83 | mpbir3and |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) | 
						
							| 85 | 74 84 | jca |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) | 
						
							| 86 | 85 | expr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) | 
						
							| 87 | 69 86 | syl5 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( ( f = F /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) | 
						
							| 88 | 87 | expcomd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) -> ( f = F -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) ) | 
						
							| 89 | 88 | impr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> ( f = F -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) | 
						
							| 90 | 63 89 | mpd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) | 
						
							| 91 | 90 | expr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) | 
						
							| 92 | 26 91 | sylanb |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) | 
						
							| 93 | 92 | an32s |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) /\ f e. ( EE ` N ) ) -> ( ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) | 
						
							| 94 | 93 | rexlimdva |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( E. f e. ( EE ` N ) ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) | 
						
							| 95 | 22 94 | mpd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) | 
						
							| 96 | 95 | expr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) ) -> ( ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) | 
						
							| 97 | 14 96 | sylanb |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ e e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) ) -> ( ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) | 
						
							| 98 | 97 | an32s |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) ) /\ e e. ( EE ` N ) ) -> ( ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) | 
						
							| 99 | 98 | reximdva |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) ) -> ( E. e e. ( EE ` N ) ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) | 
						
							| 100 | 13 99 | mpd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) | 
						
							| 101 | 100 | expr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> ( ( D Btwn <. F , g >. /\ D =/= g ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) | 
						
							| 102 | 101 | an32s |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) /\ g e. ( EE ` N ) ) -> ( ( D Btwn <. F , g >. /\ D =/= g ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) | 
						
							| 103 | 102 | rexlimdva |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> ( E. g e. ( EE ` N ) ( D Btwn <. F , g >. /\ D =/= g ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) | 
						
							| 104 | 5 103 | mpd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) | 
						
							| 105 | 104 | ex |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |