| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> N e. NN ) |
| 2 |
|
simpl3r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> F e. ( EE ` N ) ) |
| 3 |
|
simpl3l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> D e. ( EE ` N ) ) |
| 4 |
|
btwndiff |
|- ( ( N e. NN /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> E. g e. ( EE ` N ) ( D Btwn <. F , g >. /\ D =/= g ) ) |
| 5 |
1 2 3 4
|
syl3anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> E. g e. ( EE ` N ) ( D Btwn <. F , g >. /\ D =/= g ) ) |
| 6 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) -> N e. NN ) |
| 7 |
|
simpr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) -> g e. ( EE ` N ) ) |
| 8 |
|
simpl3l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) -> D e. ( EE ` N ) ) |
| 9 |
|
simpl21 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) -> A e. ( EE ` N ) ) |
| 10 |
|
simpl22 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) -> B e. ( EE ` N ) ) |
| 11 |
|
axsegcon |
|- ( ( N e. NN /\ ( g e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> E. e e. ( EE ` N ) ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) |
| 12 |
6 7 8 9 10 11
|
syl122anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) -> E. e e. ( EE ` N ) ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) |
| 13 |
12
|
adantr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) ) -> E. e e. ( EE ` N ) ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) |
| 14 |
|
anass |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ e e. ( EE ` N ) ) <-> ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) ) |
| 15 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> N e. NN ) |
| 16 |
|
simprl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> g e. ( EE ` N ) ) |
| 17 |
|
simprr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> e e. ( EE ` N ) ) |
| 18 |
|
simpl22 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
| 19 |
|
simpl23 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
| 20 |
|
axsegcon |
|- ( ( N e. NN /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. f e. ( EE ` N ) ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) |
| 21 |
15 16 17 18 19 20
|
syl122anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> E. f e. ( EE ` N ) ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) |
| 22 |
21
|
adantr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> E. f e. ( EE ` N ) ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) |
| 23 |
|
anass |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) <-> ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) /\ f e. ( EE ` N ) ) ) ) |
| 24 |
|
df-3an |
|- ( ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) <-> ( ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) /\ f e. ( EE ` N ) ) ) |
| 25 |
24
|
anbi2i |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) <-> ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) /\ f e. ( EE ` N ) ) ) ) |
| 26 |
23 25
|
bitr4i |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) <-> ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) ) |
| 27 |
|
simplrr |
|- ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) -> D =/= g ) |
| 28 |
27
|
ad2antrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> D =/= g ) |
| 29 |
28
|
necomd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> g =/= D ) |
| 30 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> N e. NN ) |
| 31 |
|
simpr1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> g e. ( EE ` N ) ) |
| 32 |
|
simpl3l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
| 33 |
|
simpr2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> e e. ( EE ` N ) ) |
| 34 |
|
simpr3 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> f e. ( EE ` N ) ) |
| 35 |
|
simprl |
|- ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) -> D Btwn <. g , e >. ) |
| 36 |
35
|
ad2antrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> D Btwn <. g , e >. ) |
| 37 |
|
simprrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> e Btwn <. g , f >. ) |
| 38 |
30 31 32 33 34 36 37
|
btwnexchand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> D Btwn <. g , f >. ) |
| 39 |
|
simpl21 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
| 40 |
|
simpl22 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
| 41 |
|
simpl23 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
| 42 |
30 31 32 33 34 36 37
|
btwnexch3and |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> e Btwn <. D , f >. ) |
| 43 |
|
simplll |
|- ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) -> B Btwn <. A , C >. ) |
| 44 |
43
|
ad2antrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> B Btwn <. A , C >. ) |
| 45 |
|
simprr |
|- ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) -> <. D , e >. Cgr <. A , B >. ) |
| 46 |
45
|
ad2antrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> <. D , e >. Cgr <. A , B >. ) |
| 47 |
|
simprrr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> <. e , f >. Cgr <. B , C >. ) |
| 48 |
30 32 33 34 39 40 41 42 44 46 47
|
cgrextendand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> <. D , f >. Cgr <. A , C >. ) |
| 49 |
38 48
|
jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> ( D Btwn <. g , f >. /\ <. D , f >. Cgr <. A , C >. ) ) |
| 50 |
|
simpl3r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> F e. ( EE ` N ) ) |
| 51 |
|
simplrl |
|- ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) -> D Btwn <. F , g >. ) |
| 52 |
51
|
ad2antrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> D Btwn <. F , g >. ) |
| 53 |
30 32 50 31 52
|
btwncomand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> D Btwn <. g , F >. ) |
| 54 |
|
simpllr |
|- ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) -> <. A , C >. Cgr <. D , F >. ) |
| 55 |
54
|
ad2antrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> <. A , C >. Cgr <. D , F >. ) |
| 56 |
30 39 41 32 50 55
|
cgrcomand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> <. D , F >. Cgr <. A , C >. ) |
| 57 |
53 56
|
jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> ( D Btwn <. g , F >. /\ <. D , F >. Cgr <. A , C >. ) ) |
| 58 |
29 49 57
|
3jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> ( g =/= D /\ ( D Btwn <. g , f >. /\ <. D , f >. Cgr <. A , C >. ) /\ ( D Btwn <. g , F >. /\ <. D , F >. Cgr <. A , C >. ) ) ) |
| 59 |
58
|
ex |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) -> ( g =/= D /\ ( D Btwn <. g , f >. /\ <. D , f >. Cgr <. A , C >. ) /\ ( D Btwn <. g , F >. /\ <. D , F >. Cgr <. A , C >. ) ) ) ) |
| 60 |
|
segconeq |
|- ( ( N e. NN /\ ( D e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( g e. ( EE ` N ) /\ f e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( g =/= D /\ ( D Btwn <. g , f >. /\ <. D , f >. Cgr <. A , C >. ) /\ ( D Btwn <. g , F >. /\ <. D , F >. Cgr <. A , C >. ) ) -> f = F ) ) |
| 61 |
30 32 39 41 31 34 50 60
|
syl133anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( g =/= D /\ ( D Btwn <. g , f >. /\ <. D , f >. Cgr <. A , C >. ) /\ ( D Btwn <. g , F >. /\ <. D , F >. Cgr <. A , C >. ) ) -> f = F ) ) |
| 62 |
59 61
|
syld |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) -> f = F ) ) |
| 63 |
62
|
imp |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> f = F ) |
| 64 |
|
opeq2 |
|- ( f = F -> <. g , f >. = <. g , F >. ) |
| 65 |
64
|
breq2d |
|- ( f = F -> ( e Btwn <. g , f >. <-> e Btwn <. g , F >. ) ) |
| 66 |
|
opeq2 |
|- ( f = F -> <. e , f >. = <. e , F >. ) |
| 67 |
66
|
breq1d |
|- ( f = F -> ( <. e , f >. Cgr <. B , C >. <-> <. e , F >. Cgr <. B , C >. ) ) |
| 68 |
65 67
|
anbi12d |
|- ( f = F -> ( ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) <-> ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) |
| 69 |
68
|
biimpa |
|- ( ( f = F /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) -> ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) |
| 70 |
|
simpl |
|- ( ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) -> e Btwn <. g , F >. ) |
| 71 |
|
btwnexch3 |
|- ( ( N e. NN /\ ( g e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( e e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( D Btwn <. g , e >. /\ e Btwn <. g , F >. ) -> e Btwn <. D , F >. ) ) |
| 72 |
30 31 32 33 50 71
|
syl122anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( D Btwn <. g , e >. /\ e Btwn <. g , F >. ) -> e Btwn <. D , F >. ) ) |
| 73 |
35 70 72
|
syl2ani |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) -> e Btwn <. D , F >. ) ) |
| 74 |
73
|
imp |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> e Btwn <. D , F >. ) |
| 75 |
|
simplrr |
|- ( ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) -> <. D , e >. Cgr <. A , B >. ) |
| 76 |
75
|
adantl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> <. D , e >. Cgr <. A , B >. ) |
| 77 |
30 32 33 39 40 76
|
cgrcomand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> <. A , B >. Cgr <. D , e >. ) |
| 78 |
54
|
ad2antrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> <. A , C >. Cgr <. D , F >. ) |
| 79 |
|
simprrr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> <. e , F >. Cgr <. B , C >. ) |
| 80 |
30 33 50 40 41 79
|
cgrcomand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> <. B , C >. Cgr <. e , F >. ) |
| 81 |
|
brcgr3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ e e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. <-> ( <. A , B >. Cgr <. D , e >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. e , F >. ) ) ) |
| 82 |
30 39 40 41 32 33 50 81
|
syl133anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. <-> ( <. A , B >. Cgr <. D , e >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. e , F >. ) ) ) |
| 83 |
82
|
adantr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. <-> ( <. A , B >. Cgr <. D , e >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. e , F >. ) ) ) |
| 84 |
77 78 80 83
|
mpbir3and |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) |
| 85 |
74 84
|
jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) ) ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) |
| 86 |
85
|
expr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( ( e Btwn <. g , F >. /\ <. e , F >. Cgr <. B , C >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
| 87 |
69 86
|
syl5 |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( ( f = F /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
| 88 |
87
|
expcomd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) -> ( f = F -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) ) |
| 89 |
88
|
impr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> ( f = F -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
| 90 |
63 89
|
mpd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) /\ ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) ) ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) |
| 91 |
90
|
expr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
| 92 |
26 91
|
sylanb |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ f e. ( EE ` N ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
| 93 |
92
|
an32s |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) /\ f e. ( EE ` N ) ) -> ( ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
| 94 |
93
|
rexlimdva |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( E. f e. ( EE ` N ) ( e Btwn <. g , f >. /\ <. e , f >. Cgr <. B , C >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
| 95 |
22 94
|
mpd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ ( ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) /\ ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) ) ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) |
| 96 |
95
|
expr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( g e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) ) -> ( ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
| 97 |
14 96
|
sylanb |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ e e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) ) -> ( ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
| 98 |
97
|
an32s |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) ) /\ e e. ( EE ` N ) ) -> ( ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) -> ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
| 99 |
98
|
reximdva |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) ) -> ( E. e e. ( EE ` N ) ( D Btwn <. g , e >. /\ <. D , e >. Cgr <. A , B >. ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
| 100 |
13 99
|
mpd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) /\ ( D Btwn <. F , g >. /\ D =/= g ) ) ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) |
| 101 |
100
|
expr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ g e. ( EE ` N ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> ( ( D Btwn <. F , g >. /\ D =/= g ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
| 102 |
101
|
an32s |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) /\ g e. ( EE ` N ) ) -> ( ( D Btwn <. F , g >. /\ D =/= g ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
| 103 |
102
|
rexlimdva |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> ( E. g e. ( EE ` N ) ( D Btwn <. F , g >. /\ D =/= g ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
| 104 |
5 103
|
mpd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) |
| 105 |
104
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |