Metamath Proof Explorer


Theorem cgrxfr

Description: A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of Schwabhauser p. 35. (Contributed by Scott Fenton, 4-Oct-2013)

Ref Expression
Assertion cgrxfr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N B Btwn A C A C Cgr D F e 𝔼 N e Btwn D F A B C Cgr3 D e F

Proof

Step Hyp Ref Expression
1 simpl1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N B Btwn A C A C Cgr D F N
2 simpl3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N B Btwn A C A C Cgr D F F 𝔼 N
3 simpl3l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N B Btwn A C A C Cgr D F D 𝔼 N
4 btwndiff N F 𝔼 N D 𝔼 N g 𝔼 N D Btwn F g D g
5 1 2 3 4 syl3anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N B Btwn A C A C Cgr D F g 𝔼 N D Btwn F g D g
6 simpl1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N N
7 simpr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N g 𝔼 N
8 simpl3l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N D 𝔼 N
9 simpl21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N A 𝔼 N
10 simpl22 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N B 𝔼 N
11 axsegcon N g 𝔼 N D 𝔼 N A 𝔼 N B 𝔼 N e 𝔼 N D Btwn g e D e Cgr A B
12 6 7 8 9 10 11 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N D Btwn g e D e Cgr A B
13 12 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g e 𝔼 N D Btwn g e D e Cgr A B
14 anass N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N
15 simpl1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N N
16 simprl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N g 𝔼 N
17 simprr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N e 𝔼 N
18 simpl22 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N B 𝔼 N
19 simpl23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N C 𝔼 N
20 axsegcon N g 𝔼 N e 𝔼 N B 𝔼 N C 𝔼 N f 𝔼 N e Btwn g f e f Cgr B C
21 15 16 17 18 19 20 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N e Btwn g f e f Cgr B C
22 21 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B f 𝔼 N e Btwn g f e f Cgr B C
23 anass N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N
24 df-3an g 𝔼 N e 𝔼 N f 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N
25 24 anbi2i N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N
26 23 25 bitr4i N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N
27 simplrr B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B D g
28 27 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C D g
29 28 necomd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C g D
30 simpl1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N N
31 simpr1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N g 𝔼 N
32 simpl3l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N D 𝔼 N
33 simpr2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N e 𝔼 N
34 simpr3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N f 𝔼 N
35 simprl B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B D Btwn g e
36 35 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C D Btwn g e
37 simprrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C e Btwn g f
38 30 31 32 33 34 36 37 btwnexchand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C D Btwn g f
39 simpl21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N A 𝔼 N
40 simpl22 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B 𝔼 N
41 simpl23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N C 𝔼 N
42 30 31 32 33 34 36 37 btwnexch3and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C e Btwn D f
43 simplll B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B B Btwn A C
44 43 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C B Btwn A C
45 simprr B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B D e Cgr A B
46 45 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C D e Cgr A B
47 simprrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C e f Cgr B C
48 30 32 33 34 39 40 41 42 44 46 47 cgrextendand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C D f Cgr A C
49 38 48 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C D Btwn g f D f Cgr A C
50 simpl3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N F 𝔼 N
51 simplrl B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B D Btwn F g
52 51 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C D Btwn F g
53 30 32 50 31 52 btwncomand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C D Btwn g F
54 simpllr B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B A C Cgr D F
55 54 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C A C Cgr D F
56 30 39 41 32 50 55 cgrcomand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C D F Cgr A C
57 53 56 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C D Btwn g F D F Cgr A C
58 29 49 57 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C g D D Btwn g f D f Cgr A C D Btwn g F D F Cgr A C
59 58 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C g D D Btwn g f D f Cgr A C D Btwn g F D F Cgr A C
60 segconeq N D 𝔼 N A 𝔼 N C 𝔼 N g 𝔼 N f 𝔼 N F 𝔼 N g D D Btwn g f D f Cgr A C D Btwn g F D F Cgr A C f = F
61 30 32 39 41 31 34 50 60 syl133anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N g D D Btwn g f D f Cgr A C D Btwn g F D F Cgr A C f = F
62 59 61 syld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C f = F
63 62 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C f = F
64 opeq2 f = F g f = g F
65 64 breq2d f = F e Btwn g f e Btwn g F
66 opeq2 f = F e f = e F
67 66 breq1d f = F e f Cgr B C e F Cgr B C
68 65 67 anbi12d f = F e Btwn g f e f Cgr B C e Btwn g F e F Cgr B C
69 68 biimpa f = F e Btwn g f e f Cgr B C e Btwn g F e F Cgr B C
70 simpl e Btwn g F e F Cgr B C e Btwn g F
71 btwnexch3 N g 𝔼 N D 𝔼 N e 𝔼 N F 𝔼 N D Btwn g e e Btwn g F e Btwn D F
72 30 31 32 33 50 71 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N D Btwn g e e Btwn g F e Btwn D F
73 35 70 72 syl2ani N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g F e F Cgr B C e Btwn D F
74 73 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g F e F Cgr B C e Btwn D F
75 simplrr B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g F e F Cgr B C D e Cgr A B
76 75 adantl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g F e F Cgr B C D e Cgr A B
77 30 32 33 39 40 76 cgrcomand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g F e F Cgr B C A B Cgr D e
78 54 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g F e F Cgr B C A C Cgr D F
79 simprrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g F e F Cgr B C e F Cgr B C
80 30 33 50 40 41 79 cgrcomand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g F e F Cgr B C B C Cgr e F
81 brcgr3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N e 𝔼 N F 𝔼 N A B C Cgr3 D e F A B Cgr D e A C Cgr D F B C Cgr e F
82 30 39 40 41 32 33 50 81 syl133anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N A B C Cgr3 D e F A B Cgr D e A C Cgr D F B C Cgr e F
83 82 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g F e F Cgr B C A B C Cgr3 D e F A B Cgr D e A C Cgr D F B C Cgr e F
84 77 78 80 83 mpbir3and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g F e F Cgr B C A B C Cgr3 D e F
85 74 84 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g F e F Cgr B C e Btwn D F A B C Cgr3 D e F
86 85 expr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g F e F Cgr B C e Btwn D F A B C Cgr3 D e F
87 69 86 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B f = F e Btwn g f e f Cgr B C e Btwn D F A B C Cgr3 D e F
88 87 expcomd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C f = F e Btwn D F A B C Cgr3 D e F
89 88 impr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C f = F e Btwn D F A B C Cgr3 D e F
90 63 89 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C e Btwn D F A B C Cgr3 D e F
91 90 expr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C e Btwn D F A B C Cgr3 D e F
92 26 91 sylanb N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N f 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn g f e f Cgr B C e Btwn D F A B C Cgr3 D e F
93 92 an32s N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B f 𝔼 N e Btwn g f e f Cgr B C e Btwn D F A B C Cgr3 D e F
94 93 rexlimdva N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B f 𝔼 N e Btwn g f e f Cgr B C e Btwn D F A B C Cgr3 D e F
95 22 94 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn D F A B C Cgr3 D e F
96 95 expr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn D F A B C Cgr3 D e F
97 14 96 sylanb N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N e 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g D Btwn g e D e Cgr A B e Btwn D F A B C Cgr3 D e F
98 97 an32s N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g e 𝔼 N D Btwn g e D e Cgr A B e Btwn D F A B C Cgr3 D e F
99 98 reximdva N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g e 𝔼 N D Btwn g e D e Cgr A B e 𝔼 N e Btwn D F A B C Cgr3 D e F
100 13 99 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g e 𝔼 N e Btwn D F A B C Cgr3 D e F
101 100 expr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N g 𝔼 N B Btwn A C A C Cgr D F D Btwn F g D g e 𝔼 N e Btwn D F A B C Cgr3 D e F
102 101 an32s N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N B Btwn A C A C Cgr D F g 𝔼 N D Btwn F g D g e 𝔼 N e Btwn D F A B C Cgr3 D e F
103 102 rexlimdva N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N B Btwn A C A C Cgr D F g 𝔼 N D Btwn F g D g e 𝔼 N e Btwn D F A B C Cgr3 D e F
104 5 103 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N B Btwn A C A C Cgr D F e 𝔼 N e Btwn D F A B C Cgr3 D e F
105 104 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N F 𝔼 N B Btwn A C A C Cgr D F e 𝔼 N e Btwn D F A B C Cgr3 D e F