| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axlowdim1 |  |-  ( N e. NN -> E. u e. ( EE ` N ) E. v e. ( EE ` N ) u =/= v ) | 
						
							| 2 | 1 | 3ad2ant1 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> E. u e. ( EE ` N ) E. v e. ( EE ` N ) u =/= v ) | 
						
							| 3 |  | simp11 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) -> N e. NN ) | 
						
							| 4 |  | simp12 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) -> A e. ( EE ` N ) ) | 
						
							| 5 |  | simp13 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) -> B e. ( EE ` N ) ) | 
						
							| 6 |  | simp2l |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) -> u e. ( EE ` N ) ) | 
						
							| 7 |  | simp2r |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) -> v e. ( EE ` N ) ) | 
						
							| 8 |  | axsegcon |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) ) -> E. c e. ( EE ` N ) ( B Btwn <. A , c >. /\ <. B , c >. Cgr <. u , v >. ) ) | 
						
							| 9 | 3 4 5 6 7 8 | syl122anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) -> E. c e. ( EE ` N ) ( B Btwn <. A , c >. /\ <. B , c >. Cgr <. u , v >. ) ) | 
						
							| 10 |  | simpl11 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) /\ c e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 11 |  | simpl13 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) /\ c e. ( EE ` N ) ) -> B e. ( EE ` N ) ) | 
						
							| 12 |  | simpr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) /\ c e. ( EE ` N ) ) -> c e. ( EE ` N ) ) | 
						
							| 13 |  | simpl2l |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) /\ c e. ( EE ` N ) ) -> u e. ( EE ` N ) ) | 
						
							| 14 |  | simpl2r |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) /\ c e. ( EE ` N ) ) -> v e. ( EE ` N ) ) | 
						
							| 15 |  | cgrdegen |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) ) -> ( <. B , c >. Cgr <. u , v >. -> ( B = c <-> u = v ) ) ) | 
						
							| 16 | 10 11 12 13 14 15 | syl122anc |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) /\ c e. ( EE ` N ) ) -> ( <. B , c >. Cgr <. u , v >. -> ( B = c <-> u = v ) ) ) | 
						
							| 17 |  | biimp |  |-  ( ( B = c <-> u = v ) -> ( B = c -> u = v ) ) | 
						
							| 18 | 17 | necon3d |  |-  ( ( B = c <-> u = v ) -> ( u =/= v -> B =/= c ) ) | 
						
							| 19 | 18 | com12 |  |-  ( u =/= v -> ( ( B = c <-> u = v ) -> B =/= c ) ) | 
						
							| 20 | 19 | 3ad2ant3 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) -> ( ( B = c <-> u = v ) -> B =/= c ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) /\ c e. ( EE ` N ) ) -> ( ( B = c <-> u = v ) -> B =/= c ) ) | 
						
							| 22 | 16 21 | syld |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) /\ c e. ( EE ` N ) ) -> ( <. B , c >. Cgr <. u , v >. -> B =/= c ) ) | 
						
							| 23 | 22 | anim2d |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) /\ c e. ( EE ` N ) ) -> ( ( B Btwn <. A , c >. /\ <. B , c >. Cgr <. u , v >. ) -> ( B Btwn <. A , c >. /\ B =/= c ) ) ) | 
						
							| 24 | 23 | reximdva |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) -> ( E. c e. ( EE ` N ) ( B Btwn <. A , c >. /\ <. B , c >. Cgr <. u , v >. ) -> E. c e. ( EE ` N ) ( B Btwn <. A , c >. /\ B =/= c ) ) ) | 
						
							| 25 | 9 24 | mpd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) -> E. c e. ( EE ` N ) ( B Btwn <. A , c >. /\ B =/= c ) ) | 
						
							| 26 | 25 | 3exp |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) -> ( u =/= v -> E. c e. ( EE ` N ) ( B Btwn <. A , c >. /\ B =/= c ) ) ) ) | 
						
							| 27 | 26 | rexlimdvv |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( E. u e. ( EE ` N ) E. v e. ( EE ` N ) u =/= v -> E. c e. ( EE ` N ) ( B Btwn <. A , c >. /\ B =/= c ) ) ) | 
						
							| 28 | 2 27 | mpd |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> E. c e. ( EE ` N ) ( B Btwn <. A , c >. /\ B =/= c ) ) |