Step |
Hyp |
Ref |
Expression |
1 |
|
axlowdim1 |
|- ( N e. NN -> E. u e. ( EE ` N ) E. v e. ( EE ` N ) u =/= v ) |
2 |
1
|
3ad2ant1 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> E. u e. ( EE ` N ) E. v e. ( EE ` N ) u =/= v ) |
3 |
|
simp11 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) -> N e. NN ) |
4 |
|
simp12 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) -> A e. ( EE ` N ) ) |
5 |
|
simp13 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) -> B e. ( EE ` N ) ) |
6 |
|
simp2l |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) -> u e. ( EE ` N ) ) |
7 |
|
simp2r |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) -> v e. ( EE ` N ) ) |
8 |
|
axsegcon |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) ) -> E. c e. ( EE ` N ) ( B Btwn <. A , c >. /\ <. B , c >. Cgr <. u , v >. ) ) |
9 |
3 4 5 6 7 8
|
syl122anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) -> E. c e. ( EE ` N ) ( B Btwn <. A , c >. /\ <. B , c >. Cgr <. u , v >. ) ) |
10 |
|
simpl11 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) /\ c e. ( EE ` N ) ) -> N e. NN ) |
11 |
|
simpl13 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) /\ c e. ( EE ` N ) ) -> B e. ( EE ` N ) ) |
12 |
|
simpr |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) /\ c e. ( EE ` N ) ) -> c e. ( EE ` N ) ) |
13 |
|
simpl2l |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) /\ c e. ( EE ` N ) ) -> u e. ( EE ` N ) ) |
14 |
|
simpl2r |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) /\ c e. ( EE ` N ) ) -> v e. ( EE ` N ) ) |
15 |
|
cgrdegen |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) ) -> ( <. B , c >. Cgr <. u , v >. -> ( B = c <-> u = v ) ) ) |
16 |
10 11 12 13 14 15
|
syl122anc |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) /\ c e. ( EE ` N ) ) -> ( <. B , c >. Cgr <. u , v >. -> ( B = c <-> u = v ) ) ) |
17 |
|
biimp |
|- ( ( B = c <-> u = v ) -> ( B = c -> u = v ) ) |
18 |
17
|
necon3d |
|- ( ( B = c <-> u = v ) -> ( u =/= v -> B =/= c ) ) |
19 |
18
|
com12 |
|- ( u =/= v -> ( ( B = c <-> u = v ) -> B =/= c ) ) |
20 |
19
|
3ad2ant3 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) -> ( ( B = c <-> u = v ) -> B =/= c ) ) |
21 |
20
|
adantr |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) /\ c e. ( EE ` N ) ) -> ( ( B = c <-> u = v ) -> B =/= c ) ) |
22 |
16 21
|
syld |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) /\ c e. ( EE ` N ) ) -> ( <. B , c >. Cgr <. u , v >. -> B =/= c ) ) |
23 |
22
|
anim2d |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) /\ c e. ( EE ` N ) ) -> ( ( B Btwn <. A , c >. /\ <. B , c >. Cgr <. u , v >. ) -> ( B Btwn <. A , c >. /\ B =/= c ) ) ) |
24 |
23
|
reximdva |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) -> ( E. c e. ( EE ` N ) ( B Btwn <. A , c >. /\ <. B , c >. Cgr <. u , v >. ) -> E. c e. ( EE ` N ) ( B Btwn <. A , c >. /\ B =/= c ) ) ) |
25 |
9 24
|
mpd |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) /\ u =/= v ) -> E. c e. ( EE ` N ) ( B Btwn <. A , c >. /\ B =/= c ) ) |
26 |
25
|
3exp |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( ( u e. ( EE ` N ) /\ v e. ( EE ` N ) ) -> ( u =/= v -> E. c e. ( EE ` N ) ( B Btwn <. A , c >. /\ B =/= c ) ) ) ) |
27 |
26
|
rexlimdvv |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( E. u e. ( EE ` N ) E. v e. ( EE ` N ) u =/= v -> E. c e. ( EE ` N ) ( B Btwn <. A , c >. /\ B =/= c ) ) ) |
28 |
2 27
|
mpd |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> E. c e. ( EE ` N ) ( B Btwn <. A , c >. /\ B =/= c ) ) |