| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> N e. NN ) |
| 2 |
|
simpl23 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> C e. ( EE ` N ) ) |
| 3 |
|
simpl21 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> A e. ( EE ` N ) ) |
| 4 |
|
simpl31 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> D e. ( EE ` N ) ) |
| 5 |
2 3 4
|
3jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) |
| 6 |
|
simpl32 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> E e. ( EE ` N ) ) |
| 7 |
|
simpl33 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> P e. ( EE ` N ) ) |
| 8 |
6 7
|
jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> ( E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) |
| 9 |
1 5 8
|
3jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> ( N e. NN /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) ) |
| 10 |
|
simpr2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> E Btwn <. D , C >. ) |
| 11 |
|
btwncom |
|- ( ( N e. NN /\ ( E e. ( EE ` N ) /\ D e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( E Btwn <. D , C >. <-> E Btwn <. C , D >. ) ) |
| 12 |
1 6 4 2 11
|
syl13anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> ( E Btwn <. D , C >. <-> E Btwn <. C , D >. ) ) |
| 13 |
10 12
|
mpbid |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> E Btwn <. C , D >. ) |
| 14 |
|
simpr3 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> P Btwn <. A , D >. ) |
| 15 |
13 14
|
jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> ( E Btwn <. C , D >. /\ P Btwn <. A , D >. ) ) |
| 16 |
|
axpasch |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( E Btwn <. C , D >. /\ P Btwn <. A , D >. ) -> E. r e. ( EE ` N ) ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) ) |
| 17 |
9 15 16
|
sylc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> E. r e. ( EE ` N ) ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) |
| 18 |
|
simp1l1 |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> N e. NN ) |
| 19 |
6
|
3ad2ant1 |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> E e. ( EE ` N ) ) |
| 20 |
2
|
3ad2ant1 |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> C e. ( EE ` N ) ) |
| 21 |
3
|
3ad2ant1 |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> A e. ( EE ` N ) ) |
| 22 |
19 20 21
|
3jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> ( E e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) |
| 23 |
|
simp2 |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> r e. ( EE ` N ) ) |
| 24 |
|
simpl22 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> B e. ( EE ` N ) ) |
| 25 |
24
|
3ad2ant1 |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> B e. ( EE ` N ) ) |
| 26 |
23 25
|
jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> ( r e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) |
| 27 |
18 22 26
|
3jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> ( N e. NN /\ ( E e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( r e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) ) |
| 28 |
|
simp3l |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> r Btwn <. E , A >. ) |
| 29 |
|
simp1r1 |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> B Btwn <. A , C >. ) |
| 30 |
|
btwncom |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) |
| 31 |
18 25 21 20 30
|
syl13anc |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) |
| 32 |
29 31
|
mpbid |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> B Btwn <. C , A >. ) |
| 33 |
28 32
|
jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> ( r Btwn <. E , A >. /\ B Btwn <. C , A >. ) ) |
| 34 |
|
axpasch |
|- ( ( N e. NN /\ ( E e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( r e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( r Btwn <. E , A >. /\ B Btwn <. C , A >. ) -> E. q e. ( EE ` N ) ( q Btwn <. r , C >. /\ q Btwn <. B , E >. ) ) ) |
| 35 |
27 33 34
|
sylc |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> E. q e. ( EE ` N ) ( q Btwn <. r , C >. /\ q Btwn <. B , E >. ) ) |
| 36 |
|
simpll1 |
|- ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) ) |
| 37 |
36 1
|
syl |
|- ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> N e. NN ) |
| 38 |
36 7
|
syl |
|- ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> P e. ( EE ` N ) ) |
| 39 |
|
simpll2 |
|- ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> r e. ( EE ` N ) ) |
| 40 |
38 39
|
jca |
|- ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> ( P e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) |
| 41 |
|
simplr |
|- ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> q e. ( EE ` N ) ) |
| 42 |
36 2
|
syl |
|- ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> C e. ( EE ` N ) ) |
| 43 |
41 42
|
jca |
|- ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> ( q e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
| 44 |
37 40 43
|
3jca |
|- ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> ( N e. NN /\ ( P e. ( EE ` N ) /\ r e. ( EE ` N ) ) /\ ( q e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) ) |
| 45 |
|
simpl3r |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) -> r Btwn <. P , C >. ) |
| 46 |
45
|
anim1i |
|- ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> ( r Btwn <. P , C >. /\ q Btwn <. r , C >. ) ) |
| 47 |
|
btwnexch2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ r e. ( EE ` N ) ) /\ ( q e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( r Btwn <. P , C >. /\ q Btwn <. r , C >. ) -> q Btwn <. P , C >. ) ) |
| 48 |
44 46 47
|
sylc |
|- ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> q Btwn <. P , C >. ) |
| 49 |
48
|
ex |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) -> ( q Btwn <. r , C >. -> q Btwn <. P , C >. ) ) |
| 50 |
49
|
anim1d |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) -> ( ( q Btwn <. r , C >. /\ q Btwn <. B , E >. ) -> ( q Btwn <. P , C >. /\ q Btwn <. B , E >. ) ) ) |
| 51 |
50
|
reximdva |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> ( E. q e. ( EE ` N ) ( q Btwn <. r , C >. /\ q Btwn <. B , E >. ) -> E. q e. ( EE ` N ) ( q Btwn <. P , C >. /\ q Btwn <. B , E >. ) ) ) |
| 52 |
35 51
|
mpd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> E. q e. ( EE ` N ) ( q Btwn <. P , C >. /\ q Btwn <. B , E >. ) ) |
| 53 |
52
|
rexlimdv3a |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> ( E. r e. ( EE ` N ) ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) -> E. q e. ( EE ` N ) ( q Btwn <. P , C >. /\ q Btwn <. B , E >. ) ) ) |
| 54 |
17 53
|
mpd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> E. q e. ( EE ` N ) ( q Btwn <. P , C >. /\ q Btwn <. B , E >. ) ) |
| 55 |
54
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) -> E. q e. ( EE ` N ) ( q Btwn <. P , C >. /\ q Btwn <. B , E >. ) ) ) |