| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> N e. NN ) | 
						
							| 2 |  | simpl23 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> C e. ( EE ` N ) ) | 
						
							| 3 |  | simpl21 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> A e. ( EE ` N ) ) | 
						
							| 4 |  | simpl31 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> D e. ( EE ` N ) ) | 
						
							| 5 | 2 3 4 | 3jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) | 
						
							| 6 |  | simpl32 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> E e. ( EE ` N ) ) | 
						
							| 7 |  | simpl33 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> P e. ( EE ` N ) ) | 
						
							| 8 | 6 7 | jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> ( E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) | 
						
							| 9 | 1 5 8 | 3jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> ( N e. NN /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) ) | 
						
							| 10 |  | simpr2 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> E Btwn <. D , C >. ) | 
						
							| 11 |  | btwncom |  |-  ( ( N e. NN /\ ( E e. ( EE ` N ) /\ D e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( E Btwn <. D , C >. <-> E Btwn <. C , D >. ) ) | 
						
							| 12 | 1 6 4 2 11 | syl13anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> ( E Btwn <. D , C >. <-> E Btwn <. C , D >. ) ) | 
						
							| 13 | 10 12 | mpbid |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> E Btwn <. C , D >. ) | 
						
							| 14 |  | simpr3 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> P Btwn <. A , D >. ) | 
						
							| 15 | 13 14 | jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> ( E Btwn <. C , D >. /\ P Btwn <. A , D >. ) ) | 
						
							| 16 |  | axpasch |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( E Btwn <. C , D >. /\ P Btwn <. A , D >. ) -> E. r e. ( EE ` N ) ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) ) | 
						
							| 17 | 9 15 16 | sylc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> E. r e. ( EE ` N ) ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) | 
						
							| 18 |  | simp1l1 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> N e. NN ) | 
						
							| 19 | 6 | 3ad2ant1 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> E e. ( EE ` N ) ) | 
						
							| 20 | 2 | 3ad2ant1 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> C e. ( EE ` N ) ) | 
						
							| 21 | 3 | 3ad2ant1 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> A e. ( EE ` N ) ) | 
						
							| 22 | 19 20 21 | 3jca |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> ( E e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) | 
						
							| 23 |  | simp2 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> r e. ( EE ` N ) ) | 
						
							| 24 |  | simpl22 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> B e. ( EE ` N ) ) | 
						
							| 25 | 24 | 3ad2ant1 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> B e. ( EE ` N ) ) | 
						
							| 26 | 23 25 | jca |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> ( r e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) | 
						
							| 27 | 18 22 26 | 3jca |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> ( N e. NN /\ ( E e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( r e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) ) | 
						
							| 28 |  | simp3l |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> r Btwn <. E , A >. ) | 
						
							| 29 |  | simp1r1 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> B Btwn <. A , C >. ) | 
						
							| 30 |  | btwncom |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) | 
						
							| 31 | 18 25 21 20 30 | syl13anc |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) | 
						
							| 32 | 29 31 | mpbid |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> B Btwn <. C , A >. ) | 
						
							| 33 | 28 32 | jca |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> ( r Btwn <. E , A >. /\ B Btwn <. C , A >. ) ) | 
						
							| 34 |  | axpasch |  |-  ( ( N e. NN /\ ( E e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( r e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( r Btwn <. E , A >. /\ B Btwn <. C , A >. ) -> E. q e. ( EE ` N ) ( q Btwn <. r , C >. /\ q Btwn <. B , E >. ) ) ) | 
						
							| 35 | 27 33 34 | sylc |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> E. q e. ( EE ` N ) ( q Btwn <. r , C >. /\ q Btwn <. B , E >. ) ) | 
						
							| 36 |  | simpll1 |  |-  ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) ) | 
						
							| 37 | 36 1 | syl |  |-  ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> N e. NN ) | 
						
							| 38 | 36 7 | syl |  |-  ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> P e. ( EE ` N ) ) | 
						
							| 39 |  | simpll2 |  |-  ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> r e. ( EE ` N ) ) | 
						
							| 40 | 38 39 | jca |  |-  ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> ( P e. ( EE ` N ) /\ r e. ( EE ` N ) ) ) | 
						
							| 41 |  | simplr |  |-  ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> q e. ( EE ` N ) ) | 
						
							| 42 | 36 2 | syl |  |-  ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> C e. ( EE ` N ) ) | 
						
							| 43 | 41 42 | jca |  |-  ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> ( q e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) | 
						
							| 44 | 37 40 43 | 3jca |  |-  ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> ( N e. NN /\ ( P e. ( EE ` N ) /\ r e. ( EE ` N ) ) /\ ( q e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) ) | 
						
							| 45 |  | simpl3r |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) -> r Btwn <. P , C >. ) | 
						
							| 46 | 45 | anim1i |  |-  ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> ( r Btwn <. P , C >. /\ q Btwn <. r , C >. ) ) | 
						
							| 47 |  | btwnexch2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ r e. ( EE ` N ) ) /\ ( q e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( r Btwn <. P , C >. /\ q Btwn <. r , C >. ) -> q Btwn <. P , C >. ) ) | 
						
							| 48 | 44 46 47 | sylc |  |-  ( ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) /\ q Btwn <. r , C >. ) -> q Btwn <. P , C >. ) | 
						
							| 49 | 48 | ex |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) -> ( q Btwn <. r , C >. -> q Btwn <. P , C >. ) ) | 
						
							| 50 | 49 | anim1d |  |-  ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) /\ q e. ( EE ` N ) ) -> ( ( q Btwn <. r , C >. /\ q Btwn <. B , E >. ) -> ( q Btwn <. P , C >. /\ q Btwn <. B , E >. ) ) ) | 
						
							| 51 | 50 | reximdva |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> ( E. q e. ( EE ` N ) ( q Btwn <. r , C >. /\ q Btwn <. B , E >. ) -> E. q e. ( EE ` N ) ( q Btwn <. P , C >. /\ q Btwn <. B , E >. ) ) ) | 
						
							| 52 | 35 51 | mpd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) /\ r e. ( EE ` N ) /\ ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) ) -> E. q e. ( EE ` N ) ( q Btwn <. P , C >. /\ q Btwn <. B , E >. ) ) | 
						
							| 53 | 52 | rexlimdv3a |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> ( E. r e. ( EE ` N ) ( r Btwn <. E , A >. /\ r Btwn <. P , C >. ) -> E. q e. ( EE ` N ) ( q Btwn <. P , C >. /\ q Btwn <. B , E >. ) ) ) | 
						
							| 54 | 17 53 | mpd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) ) -> E. q e. ( EE ` N ) ( q Btwn <. P , C >. /\ q Btwn <. B , E >. ) ) | 
						
							| 55 | 54 | ex |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ E Btwn <. D , C >. /\ P Btwn <. A , D >. ) -> E. q e. ( EE ` N ) ( q Btwn <. P , C >. /\ q Btwn <. B , E >. ) ) ) |