Step |
Hyp |
Ref |
Expression |
1 |
|
brcgr3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. <-> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) |
2 |
|
simp2 |
|- ( ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) -> <. A , C >. Cgr <. D , F >. ) |
3 |
1 2
|
syl6bi |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. -> <. A , C >. Cgr <. D , F >. ) ) |
4 |
|
simp1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> N e. NN ) |
5 |
|
simp21 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
6 |
|
simp22 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
7 |
|
simp23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
8 |
|
simp31 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
9 |
|
simp33 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> F e. ( EE ` N ) ) |
10 |
|
cgrxfr |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
11 |
4 5 6 7 8 9 10
|
syl132anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
12 |
3 11
|
sylan2d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) |
13 |
12
|
imp |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) |
14 |
|
simprrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) -> e Btwn <. D , F >. ) |
15 |
14 14
|
jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) -> ( e Btwn <. D , F >. /\ e Btwn <. D , F >. ) ) |
16 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> N e. NN ) |
17 |
|
simpl31 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> D e. ( EE ` N ) ) |
18 |
|
simpl33 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> F e. ( EE ` N ) ) |
19 |
16 17 18
|
cgrrflxd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> <. D , F >. Cgr <. D , F >. ) |
20 |
|
simpr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> e e. ( EE ` N ) ) |
21 |
16 20 18
|
cgrrflxd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> <. e , F >. Cgr <. e , F >. ) |
22 |
19 21
|
jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. e , F >. ) ) |
23 |
22
|
adantr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) -> ( <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. e , F >. ) ) |
24 |
|
simpr |
|- ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) |
25 |
|
simpr |
|- ( ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) -> <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) |
26 |
|
simpl2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
27 |
|
simpl3 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) |
28 |
17 20 18
|
3jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( D e. ( EE ` N ) /\ e e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) |
29 |
|
cgr3tr4 |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ e e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> ( ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) -> <. D , <. E , F >. >. Cgr3 <. D , <. e , F >. >. ) ) |
30 |
16 26 27 28 29
|
syl13anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) -> <. D , <. E , F >. >. Cgr3 <. D , <. e , F >. >. ) ) |
31 |
|
cgr3com |
|- ( ( N e. NN /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ e e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. D , <. E , F >. >. Cgr3 <. D , <. e , F >. >. <-> <. D , <. e , F >. >. Cgr3 <. D , <. E , F >. >. ) ) |
32 |
16 27 17 20 18 31
|
syl113anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( <. D , <. E , F >. >. Cgr3 <. D , <. e , F >. >. <-> <. D , <. e , F >. >. Cgr3 <. D , <. E , F >. >. ) ) |
33 |
|
simpl32 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> E e. ( EE ` N ) ) |
34 |
|
brcgr3 |
|- ( ( N e. NN /\ ( D e. ( EE ` N ) /\ e e. ( EE ` N ) /\ F e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. D , <. e , F >. >. Cgr3 <. D , <. E , F >. >. <-> ( <. D , e >. Cgr <. D , E >. /\ <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. E , F >. ) ) ) |
35 |
16 17 20 18 17 33 18 34
|
syl133anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( <. D , <. e , F >. >. Cgr3 <. D , <. E , F >. >. <-> ( <. D , e >. Cgr <. D , E >. /\ <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. E , F >. ) ) ) |
36 |
|
simpr1 |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( <. D , e >. Cgr <. D , E >. /\ <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. E , F >. ) ) -> <. D , e >. Cgr <. D , E >. ) |
37 |
|
simpr3 |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( <. D , e >. Cgr <. D , E >. /\ <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. E , F >. ) ) -> <. e , F >. Cgr <. E , F >. ) |
38 |
16 20 18 33 18 37
|
cgrcomlrand |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( <. D , e >. Cgr <. D , E >. /\ <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. E , F >. ) ) -> <. F , e >. Cgr <. F , E >. ) |
39 |
36 38
|
jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( <. D , e >. Cgr <. D , E >. /\ <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. E , F >. ) ) -> ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) |
40 |
39
|
ex |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( ( <. D , e >. Cgr <. D , E >. /\ <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. E , F >. ) -> ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) ) |
41 |
35 40
|
sylbid |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( <. D , <. e , F >. >. Cgr3 <. D , <. E , F >. >. -> ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) ) |
42 |
32 41
|
sylbid |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( <. D , <. E , F >. >. Cgr3 <. D , <. e , F >. >. -> ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) ) |
43 |
30 42
|
syld |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) -> ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) ) |
44 |
24 25 43
|
syl2ani |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) -> ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) ) |
45 |
44
|
imp |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) -> ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) |
46 |
15 23 45
|
3jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) -> ( ( e Btwn <. D , F >. /\ e Btwn <. D , F >. ) /\ ( <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. e , F >. ) /\ ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) ) |
47 |
46
|
ex |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) -> ( ( e Btwn <. D , F >. /\ e Btwn <. D , F >. ) /\ ( <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. e , F >. ) /\ ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) ) ) |
48 |
|
brifs |
|- ( ( ( N e. NN /\ D e. ( EE ` N ) /\ e e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ e e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( e e. ( EE ` N ) /\ F e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. <. D , e >. , <. F , e >. >. InnerFiveSeg <. <. D , e >. , <. F , E >. >. <-> ( ( e Btwn <. D , F >. /\ e Btwn <. D , F >. ) /\ ( <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. e , F >. ) /\ ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) ) ) |
49 |
|
ifscgr |
|- ( ( ( N e. NN /\ D e. ( EE ` N ) /\ e e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ e e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( e e. ( EE ` N ) /\ F e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. <. D , e >. , <. F , e >. >. InnerFiveSeg <. <. D , e >. , <. F , E >. >. -> <. e , e >. Cgr <. e , E >. ) ) |
50 |
48 49
|
sylbird |
|- ( ( ( N e. NN /\ D e. ( EE ` N ) /\ e e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ e e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( e e. ( EE ` N ) /\ F e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( ( e Btwn <. D , F >. /\ e Btwn <. D , F >. ) /\ ( <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. e , F >. ) /\ ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) -> <. e , e >. Cgr <. e , E >. ) ) |
51 |
16 17 20 18 20 17 20 18 33 50
|
syl333anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( ( ( e Btwn <. D , F >. /\ e Btwn <. D , F >. ) /\ ( <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. e , F >. ) /\ ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) -> <. e , e >. Cgr <. e , E >. ) ) |
52 |
47 51
|
syld |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) -> <. e , e >. Cgr <. e , E >. ) ) |
53 |
|
cgrid2 |
|- ( ( N e. NN /\ ( e e. ( EE ` N ) /\ e e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. e , e >. Cgr <. e , E >. -> e = E ) ) |
54 |
16 20 20 33 53
|
syl13anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( <. e , e >. Cgr <. e , E >. -> e = E ) ) |
55 |
52 54
|
syld |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) -> e = E ) ) |
56 |
55
|
imp |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) -> e = E ) |
57 |
56 14
|
eqbrtrrd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) -> E Btwn <. D , F >. ) |
58 |
57
|
expr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) ) -> ( ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) -> E Btwn <. D , F >. ) ) |
59 |
58
|
an32s |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) ) /\ e e. ( EE ` N ) ) -> ( ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) -> E Btwn <. D , F >. ) ) |
60 |
59
|
rexlimdva |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) ) -> ( E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) -> E Btwn <. D , F >. ) ) |
61 |
13 60
|
mpd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) ) -> E Btwn <. D , F >. ) |
62 |
61
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> E Btwn <. D , F >. ) ) |