| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brcgr3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. <-> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) | 
						
							| 2 |  | simp2 |  |-  ( ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) -> <. A , C >. Cgr <. D , F >. ) | 
						
							| 3 | 1 2 | biimtrdi |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. -> <. A , C >. Cgr <. D , F >. ) ) | 
						
							| 4 |  | simp1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 5 |  | simp21 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 6 |  | simp22 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 7 |  | simp23 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 8 |  | simp31 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 9 |  | simp33 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> F e. ( EE ` N ) ) | 
						
							| 10 |  | cgrxfr |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) | 
						
							| 11 | 4 5 6 7 8 9 10 | syl132anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. D , F >. ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) | 
						
							| 12 | 3 11 | sylan2d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) | 
						
							| 13 | 12 | imp |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) ) -> E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) | 
						
							| 14 |  | simprrl |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) -> e Btwn <. D , F >. ) | 
						
							| 15 | 14 14 | jca |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) -> ( e Btwn <. D , F >. /\ e Btwn <. D , F >. ) ) | 
						
							| 16 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 17 |  | simpl31 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> D e. ( EE ` N ) ) | 
						
							| 18 |  | simpl33 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> F e. ( EE ` N ) ) | 
						
							| 19 | 16 17 18 | cgrrflxd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> <. D , F >. Cgr <. D , F >. ) | 
						
							| 20 |  | simpr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> e e. ( EE ` N ) ) | 
						
							| 21 | 16 20 18 | cgrrflxd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> <. e , F >. Cgr <. e , F >. ) | 
						
							| 22 | 19 21 | jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. e , F >. ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) -> ( <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. e , F >. ) ) | 
						
							| 24 |  | simpr |  |-  ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) | 
						
							| 25 |  | simpr |  |-  ( ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) -> <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) | 
						
							| 26 |  | simpl2 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) | 
						
							| 27 |  | simpl3 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) | 
						
							| 28 | 17 20 18 | 3jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( D e. ( EE ` N ) /\ e e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) | 
						
							| 29 |  | cgr3tr4 |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ e e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> ( ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) -> <. D , <. E , F >. >. Cgr3 <. D , <. e , F >. >. ) ) | 
						
							| 30 | 16 26 27 28 29 | syl13anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) -> <. D , <. E , F >. >. Cgr3 <. D , <. e , F >. >. ) ) | 
						
							| 31 |  | cgr3com |  |-  ( ( N e. NN /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ e e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. D , <. E , F >. >. Cgr3 <. D , <. e , F >. >. <-> <. D , <. e , F >. >. Cgr3 <. D , <. E , F >. >. ) ) | 
						
							| 32 | 16 27 17 20 18 31 | syl113anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( <. D , <. E , F >. >. Cgr3 <. D , <. e , F >. >. <-> <. D , <. e , F >. >. Cgr3 <. D , <. E , F >. >. ) ) | 
						
							| 33 |  | simpl32 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> E e. ( EE ` N ) ) | 
						
							| 34 |  | brcgr3 |  |-  ( ( N e. NN /\ ( D e. ( EE ` N ) /\ e e. ( EE ` N ) /\ F e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. D , <. e , F >. >. Cgr3 <. D , <. E , F >. >. <-> ( <. D , e >. Cgr <. D , E >. /\ <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. E , F >. ) ) ) | 
						
							| 35 | 16 17 20 18 17 33 18 34 | syl133anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( <. D , <. e , F >. >. Cgr3 <. D , <. E , F >. >. <-> ( <. D , e >. Cgr <. D , E >. /\ <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. E , F >. ) ) ) | 
						
							| 36 |  | simpr1 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( <. D , e >. Cgr <. D , E >. /\ <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. E , F >. ) ) -> <. D , e >. Cgr <. D , E >. ) | 
						
							| 37 |  | simpr3 |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( <. D , e >. Cgr <. D , E >. /\ <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. E , F >. ) ) -> <. e , F >. Cgr <. E , F >. ) | 
						
							| 38 | 16 20 18 33 18 37 | cgrcomlrand |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( <. D , e >. Cgr <. D , E >. /\ <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. E , F >. ) ) -> <. F , e >. Cgr <. F , E >. ) | 
						
							| 39 | 36 38 | jca |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( <. D , e >. Cgr <. D , E >. /\ <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. E , F >. ) ) -> ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) | 
						
							| 40 | 39 | ex |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( ( <. D , e >. Cgr <. D , E >. /\ <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. E , F >. ) -> ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) ) | 
						
							| 41 | 35 40 | sylbid |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( <. D , <. e , F >. >. Cgr3 <. D , <. E , F >. >. -> ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) ) | 
						
							| 42 | 32 41 | sylbid |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( <. D , <. E , F >. >. Cgr3 <. D , <. e , F >. >. -> ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) ) | 
						
							| 43 | 30 42 | syld |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) -> ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) ) | 
						
							| 44 | 24 25 43 | syl2ani |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) -> ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) ) | 
						
							| 45 | 44 | imp |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) -> ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) | 
						
							| 46 | 15 23 45 | 3jca |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) -> ( ( e Btwn <. D , F >. /\ e Btwn <. D , F >. ) /\ ( <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. e , F >. ) /\ ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) ) | 
						
							| 47 | 46 | ex |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) -> ( ( e Btwn <. D , F >. /\ e Btwn <. D , F >. ) /\ ( <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. e , F >. ) /\ ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) ) ) | 
						
							| 48 |  | brifs |  |-  ( ( ( N e. NN /\ D e. ( EE ` N ) /\ e e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ e e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( e e. ( EE ` N ) /\ F e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. <. D , e >. , <. F , e >. >. InnerFiveSeg <. <. D , e >. , <. F , E >. >. <-> ( ( e Btwn <. D , F >. /\ e Btwn <. D , F >. ) /\ ( <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. e , F >. ) /\ ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) ) ) | 
						
							| 49 |  | ifscgr |  |-  ( ( ( N e. NN /\ D e. ( EE ` N ) /\ e e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ e e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( e e. ( EE ` N ) /\ F e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. <. D , e >. , <. F , e >. >. InnerFiveSeg <. <. D , e >. , <. F , E >. >. -> <. e , e >. Cgr <. e , E >. ) ) | 
						
							| 50 | 48 49 | sylbird |  |-  ( ( ( N e. NN /\ D e. ( EE ` N ) /\ e e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ e e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( e e. ( EE ` N ) /\ F e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( ( e Btwn <. D , F >. /\ e Btwn <. D , F >. ) /\ ( <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. e , F >. ) /\ ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) -> <. e , e >. Cgr <. e , E >. ) ) | 
						
							| 51 | 16 17 20 18 20 17 20 18 33 50 | syl333anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( ( ( e Btwn <. D , F >. /\ e Btwn <. D , F >. ) /\ ( <. D , F >. Cgr <. D , F >. /\ <. e , F >. Cgr <. e , F >. ) /\ ( <. D , e >. Cgr <. D , E >. /\ <. F , e >. Cgr <. F , E >. ) ) -> <. e , e >. Cgr <. e , E >. ) ) | 
						
							| 52 | 47 51 | syld |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) -> <. e , e >. Cgr <. e , E >. ) ) | 
						
							| 53 |  | cgrid2 |  |-  ( ( N e. NN /\ ( e e. ( EE ` N ) /\ e e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. e , e >. Cgr <. e , E >. -> e = E ) ) | 
						
							| 54 | 16 20 20 33 53 | syl13anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( <. e , e >. Cgr <. e , E >. -> e = E ) ) | 
						
							| 55 | 52 54 | syld |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) -> e = E ) ) | 
						
							| 56 | 55 | imp |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) -> e = E ) | 
						
							| 57 | 56 14 | eqbrtrrd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) /\ ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) ) ) -> E Btwn <. D , F >. ) | 
						
							| 58 | 57 | expr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) ) -> ( ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) -> E Btwn <. D , F >. ) ) | 
						
							| 59 | 58 | an32s |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) ) /\ e e. ( EE ` N ) ) -> ( ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) -> E Btwn <. D , F >. ) ) | 
						
							| 60 | 59 | rexlimdva |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) ) -> ( E. e e. ( EE ` N ) ( e Btwn <. D , F >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. e , F >. >. ) -> E Btwn <. D , F >. ) ) | 
						
							| 61 | 13 60 | mpd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) ) -> E Btwn <. D , F >. ) | 
						
							| 62 | 61 | ex |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. ) -> E Btwn <. D , F >. ) ) |